Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several non-target organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environment occurrence and toxicity of biocides currently used in antifouling paints, the speci c active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations and safety data sheets from paint manufacturers around the world. Results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT and cuprous thiocyanate were the most frequently ones, with mean relative concentrations of 35.9±12.8 %, 2.9±1.6 %, 4.0±5.3 %, 5.4±2.0 %, 1.9±1.9 % and 18.1±8.0 % (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.
Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several non-target organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environment occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations and safety data sheets from paint manufacturers around the world. Results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT and cuprous thiocyanate were the most frequently ones, with mean relative concentrations of 35.9±12.8 %, 2.9±1.6 %, 4.0±5.3 %, 5.4±2.0 %, 1.9±1.9 % and 18.1±8.0 % (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.
Lymphocystis disease has been reported worldwide in several species of freshwater fish and marine fish, naturally infected in the wild environment, or in intensive crops in farms. Nodular warty lesions of irregular surface were observed in the tegument and fins and mouth in a species of croaker (Micropogonias furnieri) caught in Cassino beach Rio Grande RS, Brazil and flounder (Paralichthys orbignyanus) caught in the city of San Clemente, Argentina. The skin lesions fragments were fixed in 20% buffered formalin, and the histological sections were stained with hematoxylin and eosin and Periodic Acid-Schiff (PAS), where microscopic alterations were visualized in the form of hyaline capsule with small basophilic structures in nodules and fibroblastic cells proliferation. The reported cases were based on the disease macroscopic findings characteristic of a lymphocystis disease, along with the histopathology, which confirmed the presence of the disease in the analyzed tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.