This chapter presents the implementation of a Genetic Algorithm into a framework for machine learning that deals with the problem of identifying the factors that impact the health state of newborns in Mexico. Experimental results show a percentage of correct clustering for unsupervised learning of 89%, a real life training matrix of 46 variables, was reduced to only 25 that represent 54% of its original size. Moreover execution time is about one and a half minutes. Each risk factor (of neonatal health) found by the algorithm was validated by medical experts. The contribution to the medical field is invaluable, since the cost of monitoring these features is minimal and it can reduce neonatal mortality in our country.
En la actualidad, existe un constante cambio en todas las áreas del conocimiento, esto ha tenido un mayor impulso debido, sin duda, al apoyo que la tecnología ha brindado en cada una de ellas. En el ámbito educativo no es la excepción, las tecnologías de información y comunicación (TIC) han influido en el cambio de los procesos de enseñanza-aprendizaje, de una enseñanza centrada en el maestro a un aprendizaje centrado en el alumno, de una educación limitada a una diversificada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.