Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.
Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project -called TerraClass -are available at INPE's web site (http://www. inpe.br/cra/projetos_pesquisas/terraclass2008.php). KEYWORDS: Remote Sensing, Tropical Deforestation, TerraClass, Image Processing.Mapeamento do uso e cobertura da terra na Amazônia Legal Brasileira com alta resolução espacial utilizando dados Landsat-5/TM e MODIS RESUMOEntender o padrão espacial do uso e cobertura da terra é essencial para estudos de biodiversidade, mudanças climáticas e modelagem ambiental, bem como para concepção e acompanhamento de políticas direcionadas ao uso da terra. O objetivo deste estudo foi criar um mapa detalhado do uso e cobertura da terra para a porção desflorestada da Amazônia Legal Brasileira, até 2008. Dados de desflorestamento e uso foram mapeados usando imagens Landsat-5/TM analisadas com técnicas como modelo linear de mistura espectral, fatiamento e interpretação visual, auxiliados por informações temporais de NDVI extraídas de série temporal de dados MODIS. O resultado deste estudo é um mapa de uso e cobertura da terra com alta resolução espacial para toda Amazônia Legal Brasileira, para o ano de 2008, e os respectivos percentuais da área ocupada por diferentes classes de uso da terra. O resultado mostrou que, quatro classes de pastagens cobrem 62% da área desflorestada da Amazônia Legal Brasileira, seguida pela vegetação secundária com 21%. A área ocupada pela agricultura anual cobriu menos de 5% das áreas desflorestadas; as áreas restantes estavam distribuídas em outras seis classes de uso da terra. Os mapas gerados por este projeto, chamado TerraClass, estão disponíveis no site do INPE (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php). PALAVRAS-CHAVE: Sensoriamento Remoto, Desflorestamento Tropical, TerraClass, Processamento de Imagens.
The Brazilian Legal Amazon (BLA), the largest global rainforest on earth, contains nearly 30% of the rainforest on earth. Given the regional complexity and dynamics, there are large government investments focused on controlling and preventing deforestation. The National Institute for Space Research (INPE) is currently developing five complementary BLA monitoring systems, among which the near real-time deforestation detection system (DETER) excels. DETER employs MODIS 250 m imagery and almost daily revisit, enabling an early warning system to support surveillance and control of deforestation. The aim of this paper is to present the methodology and results of the DETER based on AWIFS data, called DETER-B. Supported by 56 m images, the new system is effective in detecting deforestation smaller than 25 ha, concentrating 80% of its total detections and 45% of the total mapped area in this range. It also presents higher detection capability in identifying areas between 25 and 100 ha. The area estimation per municipality is statistically equal to those of the official deforestation data (PRODES) and allows the identification of degradation and logging patterns not observed with the traditional DETER system.
Since the 1980s, mangrove cover mapping has become a common scientific task. However, the systematic and continuous identification of vegetation cover, whether on a global or regional scale, demands large storage and processing capacities. This manuscript presents a Google Earth Engine (GEE)-managed pipeline to compute the annual status of Brazilian mangroves from 1985 to 2018, along with a new spectral index, the Modular Mangrove Recognition Index (MMRI), which has been specifically designed to better discriminate mangrove forests from the surrounding vegetation. If compared separately, the periods from 1985 to 1998 and 1999 to 2018 show distinct mangrove area trends. The first period, from 1985 to 1998, shows an upward trend, which seems to be related more to the uneven distribution of Landsat data than to a regeneration of Brazilian mangroves. In the second period, from 1999 to 2018, a trend of mangrove area loss was registered, reaching up to 2% of the mangrove forest. On a regional scale,~85% of Brazil's mangrove cover is in the states of Maranhão, Pará, Amapá and Bahia. In terms of persistence,~75% of the Brazilian mangroves remained unchanged for two decades or more.Globally, mangrove forests are distributed in tropical and subtropical intertidal regions between approximately 30 • N and 30 • S [6]. In 2000, mangrove forests represented a total area of 137,760 km 2 , distributed in 118 countries and making up~1% of the tropical forests in the world [7]. Mangrove forests are an evergreen type of vegetation typically distributed from the mean sea level to the highest spring tide [8] and grow in extreme environmental conditions such as extreme tides, high salinity, high temperatures and muddy anaerobic soils [9].Mangrove systems play an essential role in human sustainability, providing a wide range of ecosystem services, including nutrient cycling, soil formation and wood production. They also provide fish spawning grounds and carbon (C) storage [10][11][12], being one of the most productive and biologically complex ecosystems on earth [13]. Mangroves and coastal wetlands sequester carbon at an annual rate two to four times greater than that of mature tropical forests and store three to five times more carbon per equivalent area than do tropical forests [10]. Despite its importance, this environment is still highly threatened due to population growth and urbanisation processes.Since the 1980s, mapping and change detection in mangrove areas at the global scale have been carried out [7,11,[14][15][16]. However, there are few studies in the current literature that include the systematic and continuous identification of mangroves and associated changes, whether on the global or regional scale. In Brazil, the first national mangrove map was published in 1991 [17], based on airborne real aperture radar data collected from 1972 to 1975. At that time, the national mangrove area was~13,800 km 2 . In the same period, Schaeffer-Novelli et al. [18] described the variability in the mangrove ecosystems along the Brazilian c...
Aquaculture and salt-culture are relevant economic activities in the Brazilian Coastal Zone (BCZ). However, automatic discrimination of such activities from other water-related covers/uses is not an easy task. In this sense, convolutional neural networks (CNN) have the advantage of predicting a given pixel’s class label by providing as input a local region (named patches or chips) around that pixel. Both the convolutional nature and the semantic segmentation capability provide the U-Net classifier with the ability to access the “context domain” instead of solely isolated pixel values. Backed by the context domain, the results obtained show that the BCZ aquaculture/saline ponds occupied ~356 km2 in 1985 and ~544 km2 in 2019, reflecting an area expansion of ~51%, a rise of 1.5× in 34 years. From 1997 to 2015, the aqua-salt-culture area grew by a factor of ~1.7, jumping from 349 km2 to 583 km2, a 67% increase. In 2019, the Northeast sector concentrated 93% of the coastal aquaculture/salt-culture surface, while the Southeast and South sectors contained 6% and 1%, respectively. Interestingly, despite presenting extensive coastal zones and suitable conditions for developing different aqua-salt-culture products, the North coast shows no relevant aqua or salt-culture infrastructure sign.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.