Fault tolerance has always been a standard feature of electronic systems intended for long-term missions. However, the high complexity of modern systems makes the incorporation of fault tolerance a difficult task. Novel approaches to fault tolerance can be achieved by drawing inspiration from nature. Biological organisms possess characteristics such as healing and learning that can be applied to the design of fault-tolerant systems. This paper extends the work on bio-inspired fault-tolerant systems at the University of York. It is proposed that by combining embryonic arrays with an immune inspired network, it is possible to achieve systems with higher reliability.
Robotics is a field that continues to grow as robots become common in environments as varied as households and the battlefield. This paper presents a low cost robotics development platform using commercial off-the-shelf parts for educational and academic use. It is a direct response to the high cost and limited functionality of existing platforms. A navigation and obstacleavoidance Fuzzy Controller is provided to accelerate the typical development process for a mobile robot. The fundamental aim is to facilitate future robotics projects by producing an inexpensive, modular and highly accessible platform that improves upon existing commercial offerings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.