The accelerated rate of environmental degradation of the Mexican Caribbean coast is alarming. In this work, spatial analysis procedures were applied to study relationships among wave and wind climates, water quality, and environmental degradation of the principal coastal ecosystems. We found an increasing North-South gradient in the preservation state of the coastal ecosystems, related to the degree of anthropization of the coastline. In the north, all analysed stressors exert high pressure on coral reefs, seagrass meadows, mangroves, and dunes, and cause chronic coastline erosion. The coastal ecosystems of the central and southern regions are more mature and healthier, and the most significant stressor is reduced water quality. The north has been most hit by high-intensity hurricanes, the frequency of which has increased in the Mexican Caribbean over recent decades. The status of conservation of the ecosystems, added to the long-term intensification of environmental pressures, particularly high-intensity hurricanes, will induce further deterioration if a coordinated management scheme is not adopted by decision-makers. To ensure effective coordinated management, plans should be made on a regional scale using shared guidelines. Spatial analysis procedures aid in prioritizing and adapting the shared guidelines depending on the identified major stressors and the preservation state of each region in the Mexican Caribbean.
The goal of our work was to locate and quantify changes that occurred in 66% of the Mexican coastline, based on four land cover maps generated by the Mexican Mangrove Monitoring System (SMMM) of the National Commission for the Knowledge and Use of Biodiversity (CONABIO) for the years 1970/81, 2005, 2010, and 2015. Our results showed overall dominance of erosion over accretion processes, beaches being the most affected coastal land cover. Emphasis was placed on identification and description of coastline sites in which land was either continuously lost (erosion) or gained (accretion) during the studied time periods. These sites were defined as continuous unidirectional dynamic sites and were compared with previous knowledge about the geodynamics of Mexican coasts. Continuous unidirectional dynamic sites were distributed throughout the study area and within all land cover types, but predominantly corresponded to areas covered by mangroves in the states of Campeche and Nayarit. Finally, we found an intensification of coastal erosion-accretion processes over time; coastline change rates having duplicated between the earliest (
The interconnections between hydrodynamics, coastal sediments, and ecosystem distribution were analysed for a ~250 km strip on the northern Mexican Caribbean coast. Ecosystems were related to the prevailing and extreme hydrodynamic conditions of two contrasting coastal environments in the study area: Cancun and Puerto Morelos. The results show that the northern Mexican Caribbean coast has fine and medium sands, with grain sizes decreasing generally, from north of Cancun towards the south of the region. Artificial beach nourishments in Cancun have affected the grain size distribution there. On beaches with no reef protection, larger grain sizes (D50 > 0.46 mm) are noted. These beaches are subject to a wide range of wave-induced currents (0.01–0.20 m/s) and have steeper coastal profiles, where sediments, macroalgae and dune-mangrove systems predominate. The coastline with the greatest amount of built infrastructure coincides with beaches unprotected by seagrass beds and coral reefs. Where islands or coral reefs offer protection through less intense hydrodynamic conditions, the beaches have flatter profiles, the dry beach is narrow, current velocities are low (~0.01–0.05 m/s) and sediments are finer (D50 < 0.36 mm). The results offer a science-based description of the interactions between physical processes and the role played by land uses for other tropical coastal ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.