High-resolution ocean velocity data has become readily available since the introduction of very high frequency (VHF) radar technology. The vast amount of data generated so far, however, remains largely unused in environmental prediction. In this paper, we use VHF data of the Florida coastline to locate Lagrangian coherent structures (LCS) hidden in ocean surface currents. Such structures govern the spread of organic contaminants and passive drifters that stay confined to the ocean surface. We use the Lagrangian structures in a real-time pollution release scheme that reduces the effect of industrial contamination on the coastal environment.
Abstract. We study the flow obtained from a three-layer, eddy-resolving quasigeostrophic ocean circulation model subject to an applied wind stress curl. For this model we will consider transport between the northern and southern gyres separated by an eastward jet. We will focus on the use of techniques from dynamical systems theory, particularly lobe dynamics, in the forming of geometric structures that govern transport. By "govern", we mean they can be used to compute Lagrangian transport quantities, such as the flux across the jet. We will consider periodic, quasiperiodic, and chaotic velocity fields, and thus assess the effectiveness of dynamical systems techniques in flows with progressively more spatiotemporal complexity. The numerical methods necessary to implement the dynamical systems techniques and the significance of lobe dynamics as a signature of specific "events", such as rings pinching off from a meandering jet, are also discussed.
High-frequency (HF) radar technology produces detailed velocity maps near the surface of estuaries and bays. The use of velocity data in environmental prediction, nonetheless, remains unexplored. In this paper, we uncover a striking flow structure in coastal radar observations of Monterey Bay, along the California coastline. This complex structure governs the spread of organic contaminants, such as agricultural runoff which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal environment in the bay. We predict the motion of the Lagrangian flow structures from finite-time Lyapunov exponents of the coastal HF velocity data. From this prediction, we obtain optimal release times, at which pollution leaves the bay most efficiently.
We study the pressure-driven transient motion of a periodic file of deformable liquid drops through a cylindrical tube with circular cross-section, at vanishing Reynolds number. The investigations are based on numerical solutions of the equations of Stokes flow obtained by the boundary-integral method. It is assumed that the viscosity and density of the drops are equal to those of the suspending fluid, and the interfaces have constant tension. The mathematical formulation uses the periodic Green's function of the equations of Stokes flow in a domain that is bounded externally by a cylindrical tube, which is computed by tabulation and interpolation. The surface of each drop is discretized into quadratic triangular elements that form an unstructured interfacial grid, and the tangential velocity of the grid-points is adjusted so that the mesh remains regular for an extended but limited period of time. The results illustrate the nature of drop motion and deformation, and thereby extend previous studies for axisymmetric flow and small-drop small-deformation theories. It is found that when the capillary number is sufficiently small, the drops start deforming from a spherical shape, and then reach slowly evolving quasi-steady shapes. In all cases, the drops migrate radially toward the centreline after an initial period of rapid deformation. The apparent viscosity of the periodic suspension is expressed in terms of the effective pressure gradient necessary to drive the flow at constant flow rate. For a fixed period of separation, the apparent viscosity of a non-axisymmetric file is found to be higher than that of an axisymmetric file. In the case of non-axisymmetric motion, the apparent viscosity reaches a minimum at a certain ratio of the drop separation to tube radius. Drops with large effective radii to tube radius ratios develop slipper shapes, similar to those assumed by red blood cells in flow through capillaries, but only for capillary numbers in excess of a critical value.
Abstract. We study the flow obtained from a three-layer, eddy-resolving quasigeostrophic ocean circulation model subject to an applied wind stress curl. For this model we will consider transport between the northern and southern gyres separated by an eastward jet. We will focus on the use of techniques from dynamical systems theory, particularly lobe dynamics, in the forming of geometric structures that govern transport. By "govern", we mean they can be used to compute Lagrangian transport quantities, such as the flux across the jet. We will consider periodic, quasiperiodic, and chaotic velocity fields, and thus assess the effectiveness of dynamical systems techniques in flows with progressively more spatio-temporal complexity. The numerical methods necessary to implement the dynamical systems techniques and the significance of lobe dynamics as a signature of specific "events", such as rings pinching off from a meandering jet, are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.