Measurements of CHMultiple tracers were used to arrive at a set of UT CH 2 O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH 2 O precursors rather than direct transport of CH 2 O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH 2 O itself.In general, production of CH 2 O from CH 4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH 2 O discrepancy, which for the highest NO mixing ratios produced a median CH 2 O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH 2 O and HO 2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH 3 O 2 + NO reactions, most likely caused by unmeasured hydrocarbons.3
Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating at approximately 5.2 microm and on off-axis integrated cavity output spectroscopy (ICOS) has been developed to measure NO concentrations in human breath. A compact sample cell, 5.3 cm in length and with a volume of < 80 cm3, that is suitable for on-line and off-line measurements during a single breath cycle, has been designed and tested. A noise-equivalent (signal-to-noise ratio of 1) sensitivity of 10 parts in 10(9) by volume (ppbv) of NO was achieved. The combination of ICOS with wavelength modulation resulted in a 2-ppbv noise-equivalent sensitivity. The total data acquisition and averaging time was 15 s in both cases. The feasibility of detecting NO in expired human breath as a potential noninvasive medical diagnostic tool is discussed.
[1] A tunable diode laser absorption spectrometer (TDLAS) was operated on the NASA DC-8 aircraft during the summer INTEX-NA study to acquire ambient formaldehyde (CH 2 O) measurements over North America and the North Atlantic Ocean from $0.2 km to $12.5 km altitude spanning 17 science flights. Measurements of CH 2 O in the boundary layer and upper troposphere over the southeastern United States were anomalously low compared to studies in other years, and this was attributed to the record low temperatures over this region during the summer of 2004. Formaldehyde is primarily formed over the southeast from isoprene, and isoprene emissions are strongly temperature-dependent. Despite this effect, the median upper tropospheric (UT) CH 2 O mixing ratio of 159 pptv from the TDLAS over continental North America is about a factor of 4 times higher than the median UT value of 40 pptv observed over remote regions during TRACE-P. These observations together with the higher variability observed in this study all point to the fact that continental CH 2 O levels in the upper troposphere were significantly perturbed during the summer of 2004 relative to more typical background levels in the upper troposphere over more remote regions. The TDLAS measurements discussed in this paper are employed together with box model results in the companion paper by Fried et al. to further examine enhanced CH 2 O distributions in the upper troposphere due to convection. Measurements of CH 2 O on the DC-8 were also acquired by a coil enzyme fluorometric system and compared with measurements from the TDLAS system.
We used a high-resolution mid-IR tunable-laser absorption spectroscopy (TLAS) system with a single IV-VI laser operating near 5.2 microm to measure the level of exhaled nitric oxide (eNO) in human breath. A method of internal calibration using simultaneous eNO and exhaled CO2 measurements eliminated the need for system calibration with gas standards. The results observed from internally calibrating the instrument for eNO measurements were compared with measurements of eNO calibrated to gas standards and were found to be similar. Various parameters of the TLAS system for eNO breath testing were examined and include gas cell pressure, exhalation time, and ambient NO concentrations. A reduction in eNO from elevated concentrations (approximately 44 parts in 10(9)) to near-normal levels (<20 parts in 10(9)) from an asthmatic patient was observed after the patient had received treatment with an inhaled glucocorticoid anti-inflammatory medication. Such measurements can help in evaluating airway inflammation and in monitoring the effectiveness of anti-inflammatory therapies.
Simultaneous exhaled carbonyl sulfide (OCS) and carbon dioxide concentration measurements in human breath are demonstrated with a compact pulsed quantum-cascade laser-based gas sensor. We achieved a noise-equivalent sensitivity (1sigma) of 1.2 parts per billion by measuring a well-isolated OCS P(11) absorption line in the v3 band at 2057.6 cm(-1) using an astigmatic Herriott cell of 36-m optical path length and 0.4-s acquisition time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.