Dyslipidaemia has a prominent role in the onset of notorious atherosclerosis, a disease of medium to large arteries. Atherosclerosis is the prime root of cardiovascular events contributing to the most considerable number of morbidity and mortality worldwide. Factors like cellular senescence, genetics, clonal haematopoiesis, sedentary lifestyle-induced obesity, or diabetes mellitus upsurge the tendency of atherosclerosis and are foremost pioneers to definitive transience. Accumulation of oxidized low-density lipoproteins (Ox-LDLs) in the tunica intima triggers the onset of this disease. In the later period of progression, the build-up plaques rupture ensuing thrombosis (completely blocking the blood flow), causing myocardial infarction, stroke, and heart attack, all of which are common atherosclerotic cardiovascular events today. The underlying mechanism is very well elucidated in literature but the therapeutic measures remains to be unleashed. Researchers tussle to demonstrate a clear understanding of treating mechanisms. A century of research suggests that lowering LDL, statin-mediated treatment, HDL, and lipid-profile management should be of prime interest to retard atherosclerosis-induced deaths. We shall brief the Ox-LDL-induced atherogenic mechanism and the treating measures in line to impede the development and progression of atherosclerosis.
Microbial infections and antibiotic resistance are some of the prime factors that are ascribed to endanger human health. Several reports have highlighted that drug-resistant pathogens assist in the etiology of various chronic diseases and lead to fatality. The present study deciphered the role of zinc oxide nanoparticles (ZnO NPs) as therapeutics against selected bacterial strains. The plant-based technique was followed to synthesize ZnO NPs. The synthesis was confirmed with different techniques viz. X-ray diffraction, transmission electron microscope (interplanar spacing at 0.126 nm), scanning electron microscope (flower-like structure), and Fourier transform infrared spectroscopy. The antibacterial analysis revealed that ZnO NPs inhibited the growth of all tested strains (Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis, and Klebsiella pneumoniae) to a greater extent (MIC ranged between 0.013±0.004-0.0625±0 mg/mL) as compared with ZnO compound (Bulk material). In the present study, ZnO NPs were produced in a cost-effective and environmentally sustainable way using a green process and can be used as a remedy for drug-resistant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.