The antibacterial activity of synthetic antimicrobial agents is well known, but most of them have several side effects and are effective against selective microbes. Recently, major concern for the microbiologists is to investigate for some stable, non-toxic, cheap, and eco-friendly antimicrobial agents with a wide range of bactericidal potential. A cost-effective and environmentally friendly alternate has been proposed in the form of green synthesized nanoparticles. The Present study was designed to fabricate sericin-coated silver nanoparticles (S-AgNPs) using sericin as stabilizer and reductant of silver ions and their antibacterial potential was evaluated at various concentrations and temperatures (8, 40, and 50 C). Antimicrobial activities were assessed by the agar well diffusion method. Antibacterial activity of S-AgNPs was measured at different concentrations (1-6 mg/ml) whereas; antifungal activity was tested at 5-20 mg/ml of S-AgNPs. Nanoparticles were characterized by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, and scanning electron microscopy. These nanoparticles significantly subdued the growth of Clostridium difficile (18.7 ± 0.9 mm), Proteus mirabilis (12.3 ± 0.3 mm) and Bacillus licheniformis (10.7 ± 0.9 mm) and Aspergillus flavus (18.7 ± 2.0 mm), Mucor mycetes (13 .0 ± 1.5 mm), Candida albicans (15.3 ± 0.3 mm) and Aspergillus niger (10.0 ± 0.6 mm). S-AgNPs were stable at all temperatures and the maximum growth inhibition was found at 8 C for all pathogenic strains.We concluded that the S-AgNPs could be a potential candidate to inhibit the growth of bacterial and fungal pathogens at a wide range of environmental conditions like temperature. In various biomedical applications including antimicrobial and wound dressings, S-AgNPs can be used in the future to treat various bacterial and fungal infections.
Cancer incidences are growing rapidly and causing millions of deaths globally.Cancer treatment is one of the most exigent challenges. Drug resistance is a natural phenomenon and is considered one of the major obstacles in the successful treatment of cancer by chemotherapy. Combination therapy by the amalgamation of various anticancer drugs has suggested modulating tumor response by targeting various signaling pathways in a synergistic or additive manner. Vitamin K is an essential nutrient and has recently been investigated as a potential anticancer agent. The combination of vitamin K analogs, such as vitamins K1, K2, K3, and K5, with other chemotherapeutic drugs have demonstrated a safe, costeffective, and most efficient way to overcome drug resistance and improved the outcomes of prevailing chemotherapy. Published reports have shown that vitamin K in combination therapy improved the efficacy of clinical drugs by promoting apoptosis and cell cycle arrest and overcoming drug resistance by inhibiting P-glycoprotein. In this review, we discuss the mechanism, cellular targets, and possible ways to develop vitamin K subtypes into effective cancer chemosensitizers. Finally, this review will provide a scientific basis for exploiting vitamin K as a potential agent to improve the efficacy of chemotherapeutic drugs.
The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .
| Agricultural and domestic use of permethrin, a pyrethroid insecticide, has led to intoxication of varying intensities in non target organisms including human. In present study, teratogenicity and embryotoxicity of permethrin was tested in developing chick(Gallus domesticus). Different concentrations of permethrin (0, 5, 10 and 20ppm) were prepared in sterilized distilled water. These doses were injected into eggs on 3 rd day while recovery of embryos was done on 7 th day of incubation. Disrupted embryos with microcephly, hydrocephaly, short neck, micromelia, amelia, micrognathia, agnathia, cataract, ectopiacordis, omphalocoel, axis distortion, anencephaly, anophthalmia, microphthalmia, phocomelia with reduced body weight and crown-rump length in all dose groups were obtained. Adverse histological changes appeared in the form of disrupted and malformed visceral organs, vertebral bone and spina bifida as compared to control. The findings of this study clearly indicate that permethrin is potentially toxic to developing chicks, especially the highest concentrations used in the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.