Surface treatment remained a key solution to numerous problems of synthetic hard tissues. The basic methods of implant surface modification include various physical and chemical deposition techniques. However, most of these techniques have several drawbacks such as excessive cost and surface cracks and require very high sintering temperature. Additive mixed-electric discharge machining (AM-EDM) is an emerging technology which simultaneously acts as a machining and surface modification technique. Aside from the mere molds, dies, and tool fabrication, AM-EDM is materializing to finishing of automobiles and aerospace, nuclear, and biomedical components, through the concept of material migrations. The mechanism of material transfer by AM-EDM resembles electrophoretic deposition, whereby the additives in the AM-EDM dielectric fluids are melted and migrate to the machined surface, forming a mirror-like finishing characterized by extremely hard, nanostructured, and nanoporous layers. These layers promote the bone in-growth and strengthen the cell adhesion. Implant shaping and surface treatment through AM-EDM are becoming a key research focus in recent years. This paper reports and summarizes the current advancement of AM-EDM as a potential tool for orthopedic and dental implant fabrication. Towards the end of this paper, the current challenges and future research trends are highlighted.
Non-conventional machining process for instance, wire electrical discharge machining (WEDM) of titanium alloys is gaining attention due to non-contact nature of this process. To deepen the understanding in this area, this study investigates surface generation, kerf width, discharge gap, material removal rate and wire degradation during WEDM of Ti6Al4V alloy. Pulse on time (4–10 μs), flushing pressure (7–18 MPa) and wire tension (800–1700 gf) were varied and resulting influences on output parameters were analysed. It was found that, machined surfaces consist of multi-layered recast layer with the presence of cracks, holes as well as traces of materials from electrode wire. The composition and roughness of the machined surface varies slightly with respect to machining condition without following any trend. In addition, deformation and morphology of deformed wire electrode after the WEDM process was also reported in this study.
Numerical calculations are performed to simulate the tip leakage flow and heat transfer on the GE-E3 High-Pressure-Turbine (HPT) rotor blade. The calculations are performed for a single blade with periodic conditions imposed along the two boundaries in the circumferential-pitch direction. Cases considered are a flat blade tip at three different tip gap clearances of 1%, 1.5% and 2.5% of the blade span. The numerical results are obtained for two different pressure ratios (ratio of inlet total pressure to exit static pressure) of 1.2 and 1.32 and an inlet turbulence level of 6.1%. To explore the effect of turbulence models on the heat transfer results, three different models of increasing complexity and computational effort (standard high Re k-ε model, RNG k-ε and Reynolds Stress Model) are investigated. The predicted tip heat transfer results are compared with the experimental data of Azad [1], and show satisfactory agreement with the data. Hear transfer predictions for all three turbulence models are comparable, and no significant improvements are obtained with the Reynolds-stress model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.