Variability in digital integrated circuits makes timing verification an extremely challenging task. In this paper, a canonical first-order delay model that takes into account both correlated and independent randomness is proposed. A novel linear-time block-based statistical timing algorithm is employed to propagate timing quantities like arrival times and required arrival times through the timing graph in this canonical form. At the end of the statistical timing, the sensitivity of all timing quantities to each of the sources of variation is available. Excessive sensitivities can then be targeted by manual or automatic optimization methods to improve the robustness of the design. This paper also reports the first incremental statistical timer in the literature, which is suitable for use in the inner loop of physical synthesis or other optimization programs. The third novel contribution of this paper is the computation of local and global criticality probabilities. For a very small cost in computer time, the probability of each edge or node of the timing graph being critical is computed. Numerical results are presented on industrial application-specified integrated circuit (ASIC) chips with over two million logic gates, and statistical timing results are compared to exhaustive corner analysis on a chip design whose hardware showed early mode timing violations.
Variability in digital integrated circuits makes timing verification an extremely challenging task. In this paper, a canonical first order delay model is proposed that takes into account both correlated and independent randomness. A novel linear-time block-based statistical timing algorithm is employed to propagate timing quantities like arrival times and required arrival times through the timing graph in this canonical form. At the end of the statistical timing, the sensitivities of all timing quantities to each of the sources of variation are available. Excessive sensitivities can then be targeted by manual or automatic optimization methods to improve the robustness of the design. This paper also reports the first incremental statistical timer in the literature which is suitable for use in the inner loop of physical synthesis or other optimization programs. The third novel contribution of this paper is the computation of local and global criticality probabilities. For a very small cost in CPU time, the probability of each edge or node of the timing graph being critical is computed. Numerical results are presented on industrial ASIC chips with over two million logic gates.
Chips manufactured in 90 nm technology have shown large parametric variations, and a worsening trend is predicted. These parametric variations make circuit optimization difficult since different paths are frequency-limiting in different parts of the multi-dimensional process space. Therefore, it is desirable to have a new diagnostic metric for robust circuit optimization. This paper presents a novel algorithm to compute the criticality probability of every edge in the timing graph of a design with linear complexity in the circuit size. Using industrial benchmarks, we verify the correctness of our criticality computation via Monte Carlo simulation. We also show that for large industrial designs with 442,000 gates, our algorithm computes all edge criticalities in less than 160 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.