The controllable growth of partially aligned monolayer to multilayer micrometer stripes was demonstrated by adjusting the pulling speed in a dip-coating process. The number of molecular layers decreases with the increasing pulling speed. A lower pulling speed yields mixed multilayers (3-9 monolayers). It is noteworthy that pure monolayer and bilayer microstripes over large areas can be obtained at high pulling speeds. The stripe morphology strongly depends on the pulling speed or the number of molecular layers. XRD and confocal fluorescence measurements manifest that monolayer stripes are amorphous, while multilayer stripes (> or = 2) consist of crystalline states. FET devices were fabricated on these stripes. Monolayer stripes failed to reveal a field effect due to their amorphous state. In contrast, multilayer stripes exhibit good field-effect behavior. This study provides useful information for future molecular design in controlling molecular architectures. The controllable growth from monolayer to multilayer offers a powerful experimental system for fundamental research into the real charge accumulation and transporting layers for OFETs.
Multidrug resistance (MDR) of cancers that results from overexpression of a P-glycoprotein (P-gp) transporter mainly causes chemotherapy (CT) failure and hinders clinical transitions of current polypeptide nanomedicines. Herein, a novel polypeptide nanocomposite PNOC-PDA that integrates heat-sensitive NO gas delivery and photothermal conversion attributes can overcome MDR and maximize CT; meanwhile the optimized CT and intracellular high-concentration NO gas can assist a mild photothermal therapy (PTT) to eradicate cancer cells. The triple therapies produced a superior and synergistic effect on MDR-reversal and killing MCF-7/ADR in vitro, and the P-gp expression level was downregulated to 46%, as confirmed by means of MTT, Western blot, flow cytometry, and confocal laser scanning microscopy. Significantly, by using one intravenous injection of PNOC-PDA/DOX and a single near-infrared irradiation, the triple therapies of mild PTT, NO gas therapy, and CT achieved complete MCF-7/ADR tumor ablation without skin damage, scarring, and tumor recurrence within 30 days. This work provides a versatile method for the fabrication of NIR-responsive polypeptide nanocomposite with intrinsic photothermal conversion and NO-releasing attributes, opening up a new avenue for reversing MDR in tumors.
The tissue response to a nano-hydroxyapatite/collagen composite implanted in a marrow cavity was investigated by histology and scanning electron microscopy. A Knoop microhardness test was performed to compare the mechanical behavior of the composite and bone. The ultrastructural features of the composite, especially the carbonate-substituted hydroxyapatite with low crystallinity and nanometer size, made it a bone-resembling material. It was bioactive, as well as biodegradable. At the interface of the implant and marrow tissue, solution-mediated dissolution and giant cell mediated resorption led to the degradation of the composite. Interfacial bone formation by osteoblasts was also evident. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant. For lack of the hierarchical organization similar to that of bone, the composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of the femur compacta.
We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.