The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO films can be influenced by the porosity of the mesoporous structures, which is primarily determined by surfactant concentration in the films. Mesoporous ZnO thin films were successfully synthesized by using sol-gel and evaporation-induced self-assembly processes. Zinc acetate dihydrate and Brij-76 were used as the starting material and pore structure-forming template, respectively. The porosity of mesoporous ZnO thin films increased from 29% to 40% with increasing surfactant molar ratio. Porosity can be easily altered by controlling the molar ratio of surfactant/precursor. The electrical and thermal conductivity and Seebeck coefficients showed a close correlation with the porosity of the films, indicating that the thermoelectric properties of thin films can be changed by altering their porosity. Mesoporous ZnO thin films with the highest porosity had the best thermoelectric properties (the lowest thermal conductivity and the highest Seebeck coefficient) of the films examined.
Al-doped mesoporous ZnO thin films were synthesized by a sol-gel process and an evaporation-induced self-assembly process. In this work, the effects of Al doping concentration on the electrical conductivity and characterization of mesoporous ZnO thin films were investigated. By changing the Al doping concentration, ZnO grain growth is inhibited, and the mesoporous structure of ZnO is maintained during a relatively high temperature annealing process. The porosity of Al-doped mesoporous ZnO thin films increased slightly with increasing Al doping concentration. Finally, as electrical conductivity was increased as electrons were freed and pore structure was maintained by inhibiting grain growth, the thermoelectric property was enhanced with increasing Al concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.