A multimetal doping strategy has aroused extensive attention in promoting a non-noble catalyst for selective hydrogenation reaction. Herein, a multimetallic catalyst (NiCoZn@CN) with excellent catalytic performance for hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) is prepared through a facile, inexpensive, and efficient pyrolysis method. Using H 2 as a H donor, extremely high selectivity (>99%) with 100% conversion is attained over the optimal NiCoZn@CN-600 catalyst. The subtle synergy between Co and Ni, Zn dopants, which remarkably promotes the performance of the Co-based catalyst, is revealed. In the NiCoZn@CN system, Co 0 is proven to be the main active site, whose content is greatly improved by Ni and Co dopants. Additionally, the Ni dopant could also benefit activation of H 2 and the Zn dopant could enhance metal nanoparticle dispersion and the porous structure of the catalyst. In situ FTIR indicates that the vertical adsorption mode of FAL with the O aldehyde
Cu, Co and Zn modified N-doped porous carbons (CuCo/Zn@NPC) are prepared using a polymetallic homogeneous doping and self-templating method as high performance non-noble metal catalysts for the hydrogenation of furfural...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.