Prediction and confirmation of the presence of disease-related miRNAs is beneficial to understand disease mechanisms at the miRNA level. However, the use of experimental verification to identify disease-related miRNAs is expensive and time-consuming. Effective computational approaches used to predict miRNA-disease associations are highly specific. In this study, we develop the Network Consistency Projection for miRNA-Disease Associations (NCPMDA) method to reveal the potential associations between miRNAs and diseases. NCPMDA is a non-parametric universal network-based method that can simultaneously predict miRNA-disease associations in all diseases but does not require negative samples. NCPMDA can also confirm the presence of miRNAs in isolated diseases (diseases without any known miRNA association). Leave-one-out cross validation and case studies have shown that the predictive performance of NCPMDA is superior over that of previous method.
There is more and more evidence that the mutation and dysregulation of long non-coding RNA (lncRNA) are associated with numerous diseases, including cancers. However, experimental methods to identify associations between lncRNAs and diseases are expensive and time-consuming. Effective computational approaches to identify disease-related lncRNAs are in high demand; and would benefit the detection of lncRNA biomarkers for disease diagnosis, treatment, and prevention. In light of some limitations of existing computational methods, we developed a global network random walk model for predicting lncRNA-disease associations (GrwLDA) to reveal the potential associations between lncRNAs and diseases. GrwLDA is a universal network-based method and does not require negative samples. This method can be applied to a disease with no known associated lncRNA (isolated disease) and to lncRNA with no known associated disease (novel lncRNA). The leave-one-out cross validation (LOOCV) method was implemented to evaluate the predicted performance of GrwLDA. As a result, GrwLDA obtained reliable AUCs of 0.9449, 0.8562, and 0.8374 for overall, novel lncRNA and isolated disease prediction, respectively, significantly outperforming previous methods. Case studies of colon, gastric, and kidney cancers were also implemented, and the top 5 disease-lncRNA associations were reported for each disease. Interestingly, 13 (out of the 15) associations were confirmed by literature mining.
In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs) play critical roles in many biological processes associated with human diseases. Inferring potential lncRNA-disease associations is essential to reveal the secrets behind diseases, develop novel drugs, and optimize personalized treatments. However, biological experiments to validate lncRNA-disease associations are very time-consuming and costly. Thus, it is critical to develop effective computational models. In this study, we have proposed a method called BPLLDA to predict lncRNA-disease associations based on paths of fixed lengths in a heterogeneous lncRNA-disease association network. Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by integrating the lncRNA-disease association network, the lncRNA functional similarity network, and the disease semantic similarity network. It then infers the probability of an lncRNA-disease association based on paths connecting them and their lengths in the network. Compared to existing methods, BPLLDA has a few advantages, including not demanding negative samples and the ability to predict associations related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical lncRNA-disease association database called LncRNADisease, together with two popular methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and 0.78528, respectively, for predicting overall associations, associations related to novel lncRNAs, and associations related to novel diseases, higher than those of the two compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer were selected as case studies, for which the predicted top five lncRNA-disease associations were verified by recently published literature. In summary, BPLLDA exhibits good performances in predicting novel lncRNA-disease associations and associations related to novel lncRNAs and diseases. It may contribute to the understanding of lncRNA-associated diseases like certain cancers.
Background Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysis and prevention. Establishing effective computational methods for lncRNA-disease association prediction is critical. Results In this paper, we propose a novel model named MAGCNSE to predict underlying lncRNA-disease associations. We first obtain multiple feature matrices from the multi-view similarity graphs of lncRNAs and diseases utilizing graph convolutional network. Then, the weights are adaptively assigned to different feature matrices of lncRNAs and diseases using the attention mechanism. Next, the final representations of lncRNAs and diseases is acquired by further extracting features from the multi-channel feature matrices of lncRNAs and diseases using convolutional neural network. Finally, we employ a stacking ensemble classifier, consisting of multiple traditional machine learning classifiers, to make the final prediction. The results of ablation studies in both representation learning methods and classification methods demonstrate the validity of each module. Furthermore, we compare the overall performance of MAGCNSE with that of six other state-of-the-art models, the results show that it outperforms the other methods. Moreover, we verify the effectiveness of using multi-view data of lncRNAs and diseases. Case studies further reveal the outstanding ability of MAGCNSE in the identification of potential lncRNA-disease associations. Conclusions The experimental results indicate that MAGCNSE is a useful approach for predicting potential lncRNA-disease associations.
Identification of miRNA-disease association is a fundamental challenge in human health clinic. However, the known miRNA-disease associations are rare and experimental verification methods are expensive and time-consuming. Therefore, there is a strong incentive to develop computational methods. In this paper, we calculate the similarity score for each miRNAs pair by integrating miRNA functional similarity and miRNA family information. We use the disease phenotype similarity data to construct the disease similarity network. Then we introduce a new miRNA-disease association prediction method (NETwork Group Similarity, NetGS) to explore the global network similarity, capturing the relationship between the disease and other diseases, the similarity between the potential disease-related miRNA and other miRNAs. Finally based on the consistency of diffusion profiles we get the miRNA-disease association scores. NetGS is tested by the leave-one-out cross validation and achieves an AUC value of 0.8450, which improves the prediction accuracy. NetGS can also be applied to solve the new miRNA-disease association and obtain reliable accuracy. Moreover, we use NetGS to predict new causing miRNAs of three cancers including breast cancer, lung cancer and Hepatocellular cancer. And the top predictions have been confirmed in the online databases. The encouraging results indicate that NetGS might play an essential role for future scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.