In this paper, we propose a method of wirelessly torque transfer (WTT) and power (WPT) to a drug pump, one of implantable medical devices. By using the magnetic field generated by the WPT system to transfer torque and power to the receiving coil at the same time, applications that previously used power from the battery can be operated without a battery. The proposed method uses a receiving coil with magnetic material as a motor, and can generate torque in a desired direction using the magnetic field from the transmitting coil. The WPT system was analyzed using a topology that generates a constant current for stable torque generation. In addition, a method for detecting the position of the receiving coil without using additional power was proposed. Through simulations and experiments, it was confirmed that WTT and WPT were possible at the same time, and in particular, it was confirmed that WTT was stably possible.
In this paper, we propose a method to reduce the leakage magnetic field from wireless power transfer (WPT) systems with series–series compensation topology by adjusting the phase difference between the transmitter (TX) coil current and the receiver (RX) coil current without additional shielding coils or materials. A WPT system employing the proposed method adjusts the phase difference between the TX coil current and RX coil current by tuning a resonant capacitor of the RX coil. The conditions for minimizing the leakage magnetic field are derived, and the range of the resonant capacitor of RX, considering power transfer efficiency and the leakage magnetic field, is proposed. Through simulations and experiments, it is verified that the proposed method can reduce the leakage magnetic field level without any additional materials. For that reason, the proposed method can be suitable for size-limited, weight-limited or cost-limited WPT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.