This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.