BackgroundThe Phosphate transporter 1 (PHT1) gene family has crucial roles in phosphate uptake, translocation, remobilization, and optimization of metabolic processes using of Pi. Gene duplications expand the size of gene families, and subfunctionalization of paralog gene pairs is a predominant tendency after gene duplications. To date, experimental evidence for the evolutionary relationships among different paralog gene pairs of a given gene family in soybean is limited.ResultsAll potential Phosphate transporter 1 genes in Glycine max L. (GmPHT1) were systematically analyzed using both bioinformatics and experimentation. The soybean PHT1 genes originated from four distinct ancestors prior to the Gamma WGT and formed 7 paralog gene pairs and a singleton gene. Six of the paralog gene pairs underwent subfunctionalization, and while GmPHT1;4 paralog gene experienced pseudogenization. Examination of long-term evolutionary changes, six GmPHT1 paralog gene pairs diverged at multiple levels, in aspects of spatio-temporal expression patterns and/or quanta, phosphates affinity properties, subcellular localization, and responses to phosphorus stress.ConclusionsThese characterized divergences occurred in tissue- and/or development-specific modes, or conditional modes. Moreover, they have synergistically shaped the evolutionary rate of GmPHT1 family, as well as maintained phosphorus homeostasis at cells and in the whole plant.
Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma.
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for measuring and evaluating gene expression during variable biological processes. To facilitate gene expression studies, normalization of genes of interest relative to stable reference genes is crucial. The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), the main vector of tomato spotted wilt virus (TSWV), is a destructive invasive species. In this study, the expression profiles of 11 candidate reference genes from nonviruliferous and viruliferous F. occidentalis were investigated. Five distinct algorithms, geNorm, NormFinder, BestKeeper, the ΔC t method, and RefFinder, were used to determine the performance of these genes. geNorm, NormFinder, BestKeeper, and RefFinder identified heat shock protein 70 (HSP70), heat shock protein 60 (HSP60), elongation factor 1 α, and ribosomal protein l32 (RPL32) as the most stable reference genes, and the ΔC t method identified HSP60, HSP70, RPL32, and heat shock protein 90 as the most stable reference genes. Additionally, two reference genes were sufficient for reliable normalization in nonviruliferous and viruliferous F. occidentalis. This work provides a foundation for investigating the molecular mechanisms of TSWV and F. occidentalis interactions.
ABSTRACT. Quantitative reverse-transcription PCR (qRT-PCR)is a versatile technique for the analysis of gene expression. The selection of stable reference genes is essential for the application of this technique. Cauliflower (Brassica oleracea L. var. botrytis) is a commonly consumed vegetable that is rich in vitamin, calcium, and iron. Thus far, to our knowledge, there have been no reports on the validation of suitable reference genes for the data normalization of qRT-PCR in cauliflower. In the present study, we analyzed 12 candidate housekeeping genes in cauliflower subjected to different abiotic stresses, hormone treatment conditions, and accessions. geNorm and NormFinder algorithms were used to assess the expression stability of these genes. ACT2 and TIP41 were selected as suitable reference genes across all experimental samples in this study. When different accessions were compared, ACT2 and UNK3 were found to be the most 2 X.G. Sheng et al. Genetics and Molecular Research 15 (3): gmr.15038348 suitable reference genes. In the hormone and abiotic stress treatments, ACT2, TIP41, and UNK2 were the most stably expressed. Our study also provided guidelines for selecting the best reference genes under various experimental conditions.
It has been found that 5-hydroxytryptamine (5-HT) modulates the feeding of some insects, and this phenomenon was found in Harmonia axyridis (Pallas) by our previous study. An understanding of the 5-HT system in this beetle is helpful for utilizing 5-HT to modulate its predation to improve biological control efficiency, especially in greenhouses in winter in north China. This is because 5-HT influences diapause in insects by modulating the synthesis and release of prothoracic hormone (PTTH) and, therefore, influences feeding. To elucidate the molecular basis of the H. axyridis 5-HT system, reverse-transcription polymerase chain reaction (RT-PCR), multiple sequence alignment, and phylogenetic tree construction were used to identify the 5-HT receptor in H. axyridis, and quantitative real-time PCR (qRT-PCR) was used to analyze the expression pattern of these receptor genes in different developmental stages and in the nervous system (brain + ventral nerve cord), digestive tract, pectoral muscles, and gonads of the adult ladybird. The results showed that four 5-HT receptors were identified in H. axyridis, named 5-HT1AHar, 5-HT1BHar, 5-HT2Har, and 5-HT7Har. The four receptors were expressed at high levels in the adult stage, especially in 2-day-old adults, with expression levels of 18.72-fold (male) and 14.21-fold (female) of that in eggs for 5-HT1A, 32.27-fold (male) and 83.58-fold (female) of that in eggs for 5-HT1B, 36.82-fold (male) and 119.35-fold (female) of that in eggs for 5-HT2, and 165.47-fold (male) and 115.59-fold (female) of that in eggs for 5-HT7. The level of expression decreased with the advance of day-age in adults. The levels of expression of 5-HT1BHar, 5-HT2Har, and 5-HT7Har were low at the egg, larval, and pupal stages, and 5-HT1AHar was not expressed in the larval stage. The four receptors were expressed in the nervous system, digestive tract, pectoral muscles, and male and female gonads. The 5-HT1AHar was expressed at a high level in the pectoral muscle (6.75-fold of that in the nervous system), 5-HT1BHar in male gonads (1.02-fold of that in the nervous system) and the nervous system, 5-HT2Har in male gonads (5.74-fold of that in the nervous system), and 5-HT7Har in the digestive tract (1.81-fold of that in the nervous system). The results of this study will lay a foundation for research on the function of the 5-HT receptor by RNA interference in the regulation of predation by H. axyridis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.