Motor imagery (MI) requires subjects to visualize the requested motor behaviors, which involves a large-scale network that spans multiple brain areas. The corresponding cortical activity reflected on the scalp is characterized by event-related desynchronization (ERD) and then by event-related synchronization (ERS). However, the network mechanisms that account for the dynamic information processing of MI during the ERD and ERS periods remain unknown. Here, we combined ERD/ERS analysis with the dynamic networks in different MI stages (i.e. motor preparation, ERD and ERS) to probe the dynamic processing of MI information. Our results show that specific dynamic network structures correspond to the ERD/ERS evolution patterns. Specifically, ERD mainly shows the contralateral networks, while ERS has the symmetric networks. Moreover, different dynamic network patterns are also revealed between the two types of MIs, in which the left-hand MIs exhibit a relatively less sustained contralateral network, which may be the network mechanism that accounts for the bilateral ERD/ERS observed for the left-hand MIs. Similar to the network topologies, the three MI stages also appear to be characterized by different network properties. The above findings all demonstrate that different MI stages that involve specific brain networks for dynamically processing the MI information.
Epilepsy is a neurological disorder in the brain that is characterized by unprovoked seizures. Epileptic seizures are attributed to abnormal synchronous neuronal activity in the brain. To detect the seizure as early as possible, the identification of specific electroencephalogram (EEG) dynamics is of great importance in investigating the transition of brain activity as the epileptic seizure approaches. In this study, we investigated the transition of brain activity from interictal to preictal states preceding a seizure by combining EEG network and clustering analyses together in different frequency bands. The findings of this study demonstrated the best clustering performance of k-medoids in the beta band; in addition, compared to the interictal state, the preictal state experienced increased synchronization of EEG network connectivity, characterized by relatively higher network properties. These findings can provide helpful insight into the mechanism of epilepsy, which can also be used in the prediction of epileptic seizures and subsequent intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.