Motor imagery (MI) requires subjects to visualize the requested motor behaviors, which involves a large-scale network that spans multiple brain areas. The corresponding cortical activity reflected on the scalp is characterized by event-related desynchronization (ERD) and then by event-related synchronization (ERS). However, the network mechanisms that account for the dynamic information processing of MI during the ERD and ERS periods remain unknown. Here, we combined ERD/ERS analysis with the dynamic networks in different MI stages (i.e. motor preparation, ERD and ERS) to probe the dynamic processing of MI information. Our results show that specific dynamic network structures correspond to the ERD/ERS evolution patterns. Specifically, ERD mainly shows the contralateral networks, while ERS has the symmetric networks. Moreover, different dynamic network patterns are also revealed between the two types of MIs, in which the left-hand MIs exhibit a relatively less sustained contralateral network, which may be the network mechanism that accounts for the bilateral ERD/ERS observed for the left-hand MIs. Similar to the network topologies, the three MI stages also appear to be characterized by different network properties. The above findings all demonstrate that different MI stages that involve specific brain networks for dynamically processing the MI information.
This study used large-scale time-varying network analysis to reveal the diverse network patterns during the different decision stages and found that the responses of rejection and acceptance involved different network structures. When participants accept unfair offers, the brain recruits a more bottom-up mechanism with a much stronger information flow from the visual cortex (O2) to the frontal area, but when they reject unfair offers, it displayed a more top-down flow derived from the frontal cortex (Fz) to the parietal and occipital cortices. Furthermore, we performed 2 additional studies to validate the above network models: one was to identify the 2 responses based on the out-degree information of network hub nodes, which results in 70% accuracy, and the other utilized theta burst stimulation (TBS) of transcranial magnetic stimulation (TMS) to modulate the frontal area before the decision-making tasks. We found that the intermittent TBS group demonstrated lower acceptance rates and that the continuous TBS group showed higher acceptance rates compared with the sham group. Similar effects were not observed after TBS of a control site. These results suggest that the revealed decision-making network model can serve as a potential intervention model to alter decision responses.
The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.
Cognitive deficits in schizophrenia are correlated with the dysfunctions of distinct brain regions including anterior cingulate cortex (ACC) and prefrontal cortex (PFC). Apart from the dysfunctions of the intrinsic connectivity of related areas, how the coupled neural populations work is also crucial in related processes. Twenty-four patients with schizophrenia (SZs) and 24 matched healthy controls (HCs) were recruited in our study. Based on the electroencephalogram (EEG) datasets recorded, the Dynamic Causal Modeling (DCM) was then adopted to estimate how the brain architecture adapts among related areas in SZs and to investigate the mechanism that accounts for their cognitive deficits. The distinct winning models in SZs and HCs consistently emphasized the importance of ACC in regulating the elicitations of P300s. Specifically, comparing to that in HCs, the winning model in SZs uncovered a compensatory pathway from dorsolateral PFC to intraparietal sulcus that promised the SZs' accomplishing P300 tasks. The findings demonstrated that the “disconnectivity hypothesis” is helpful and useful in explaining the cognitive deficits in SZs, while the brain architecture adapted with related compensatory pathway promises the limited brain cognitions in SZs. This study provides a new viewpoint that deepens our understanding of the cognitive deficits in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.