BackgroundInsight into the factors that regulate the circadian host-seeking flight activity of Culicoides vectors (Diptera: Ceratopogonidae) will be of importance to assess the risk of transmission of Culicoides-borne pathogens. This study aimed to determine the impact of temperature and humidity on the flight activity of Culicoides imicola Kieffer, and other livestock associated Culicoides species, under both laboratory and field conditions.MethodsBatches of 500 field-collected C. imicola females were acclimatized at a predetermined range of temperatures (10–29 °C) and relative humidity (34–85%). After acclimatization, these females, prompted by a light source, were allowed to escape through a transparent plastic funnel into a paper cup, where they were counted after an hour. Flight activity under field conditions was determined seasonally by hourly light trap collections done overnight at four sites near cattle.ResultsExperiments conducted at various test conditions in the laboratory indicated that flight activity started at 13 °C. Peak in activity was observed between 16 °C to 18 °C, and temperatures above 20 °C seemingly inhibit flight. Under field conditions, a peak in numbers collected was observed immediately after sunset. With mean nocturnal temperatures below 19 °C, more than 74% of the Culicoides were collected within two to three hours after sunset. With mean nocturnal temperature above 19 °C, the peak in numbers at sunset was sustained until after midnight, with somewhat higher numbers collected after midnight once temperatures dropped below 20 °C. No peak in numbers was observed at dawn. Although very low numbers were collected during the day, which partly may have been a result of the collecting method, Culicoides were present throughout periods of 24 hours. Humidity seemed to play a minor role in the regulation of flight activity.ConclusionsAbundance and species diversity results as obtained in this study indicated a high level of risk of virus transmission in the first hours following sunset. A strong relationship was found between host-seeking activity, and hence trap efficiency, and within limits, temperature. Light traps primarily measure flight activity and may as such underestimate adult abundance of C. imicola if deployed at temperatures outside thresholds of 16–20 °C.
BackgroundArea-wide integrated pest management strategies that include a sterile insect technique component have been successfully used to eradicate tsetse fly populations in the past. To ensure the success of the sterile insect technique, the released males must be adequately sterile and be able to compete with their native counterparts in the wild.Methodology/Principal findingsIn the present study the radiation sensitivity of colonised Glossina brevipalpis Newstead (Diptera; Glossinidae) males, treated either as adults or pupae, was assessed. The mating performance of the irradiated G. brevipalpis males was assessed in walk-in field cages. Glossina brevipalpis adults and pupae were highly sensitive to irradiation, and a dose of 40 Gy and 80 Gy induced 93% and 99% sterility respectively in untreated females that mated with males irradiated as adults. When 37 to 41 day old pupae were exposed to a dose of 40 Gy, more than 97% sterility was induced in untreated females that mated with males derived from irradiated pupae. Males treated as adults with a dose up to 80 Gy were able to compete successfully with untreated fertile males for untreated females in walk-in field cages.Conclusions/SignificanceThe data emanating from this field cage study indicates that, sterile male flies derived from the colony of G. brevipalpis maintained at the Agricultural Research Council-Onderstepoort Veterinary Institute in South Africa are potential good candidates for a campaign that includes a sterile insect technique component. This would need to be confirmed by open field studies.
A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven’t been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.