In this paper, the mechanical degradation of a commercial gas diffusion layer subjected to repeated freeze–thaw thermal cycles is studied. In a fuel cell, the mechanical assembly state directly affects the performance of polymer electrolyte membrane fuel cells. Particularly, the gas diffusion layer repeatedly withstands the complex heat and humidity environmental conditions in which the temperature and humidity are always greatly changed. Studying the three-dimensional mechanical degradation of gas diffusion layers due to orthotropic properties is very useful in extending the lifetime and durability of fuel cells. To investigate this, we first established the standard freeze–thaw thermal cycle and studied the gas diffusion layer’s mechanical degradation performance with up to 400 repeated freeze–thaw thermal cycles. Furthermore, different types of failure in the gas diffusion layer caused by the repeated thermal aging treatment were observed using a scanning electron microscope, to explain the change in the mechanical deterioration. As a result, the different thermal failure plays different roles in the explanation of the gas diffusion layer’s mechanical degradation under different thermal cycles. In particular, the thermal failure that resulted from the first 100 thermal cycles has the greatest effect on the compressive and tensile performance, compared to the shear behavior.
The electrical property of gas diffusion layers (GDLs) plays a significant role in influencing the overall performance of polymer electrolyte membrane fuel cells (PEMFCs). The electrical degradation performance of GDLs has not been reported sufficiently. Understanding the electrical degradation characteristics of GDLs is vital to better fuel cell performance, higher efficiency, and longer service time. This paper investigated the effective in-plane electrical resistivity of a commercial GDL by considering environmental and assembly conditions similar to those in use for the operation of PEMFCs. The effective in-plane electrical resistivity of the GDL, subjected to a series of freeze–thaw thermal cycles, was characterized to study its progressive electrical degradation with thermal cycles. Experimental results indicated that, under low compressive loads, the effective in-plane electrical resistivity of the commercial GDL showed weak anisotropy, and was greatly influenced by the transformation of carbon fiber connection in the porous layer. In particular, the thermal aging treatment on the GDL through the first 100 freeze–thaw cycles contributed a lot to its in-plane electrical degradation performance.
In this paper, a three-dimensional finite element analysis (3D-FEA) model for shear horizontal surface acoustic wave (SH-SAW) torque sensors is presented. Torque sensors play a significant role in various fields to ensure a reliable torque transmission in drivelines. Featuring the advantages of high propagation velocity, large Q-value, and good power capacity, SH-SAW-based torque sensors are promising but very few studies have been carried out. In order to develop a successful sensor, understanding the characteristics of SH-SAWs produced on piezoelectric substrates and torque sensing modes is indispensable. Therefore, in this study, we first investigated the effect on the generation of waves when different Y-cut quartz substrates are engaged. Thereafter, analyses and comparisons regarding the effect on the polarized displacement, wave guidance, and wave mode were conducted for different configurations of wave-guide layer thickness to wavelength ratios (hlayer/λ) and materials. The results showed that Y-cut quartz at an angle close to 36° with a gold (Au) layer varying from hAu/λ = 0.02 to 0.03 thickness could be the most effective configuration for the excitation of SH-SAWs, compared to other combinations using platinum (Pt), titanium (Ti), and silicon dioxide (SiO2). Finally, based on the FEA SH-SAW torque sensor model configured with a Y + 36° quartz substrate and 0.025 λ-thick gold layer, the relationship between the applied torque and sensed voltage was examined, which shows a perfect linearity demonstrating the performance of the sensors.
In this paper, a commercial gas diffusion layer is used, to quantitatively study the correlation between its compressive characteristics and its operating temperature. In polymer electrode membrane fuel cells, the gas diffusion layer plays a vital role in the membrane electrode assembly, over a wide range of operating temperatures. Therefore, understanding the thermo-mechanical performance of gas diffusion layers is crucial to design fuel cells. In this research, a series of compressive tests were conducted on a commercial gas diffusion layer, at three different temperatures. Additionally, a microscopical investigation was carried out with the help of a scanning electron microscope, to study the evolution and development of the microstructural damages in the gas diffusion layers which is caused by the thermo-mechanical load. From the obtained results, it could be concluded that the compressive stiffness of the commercial gas diffusion layer depends, to a great extent, on its operational temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.