MicroRNA (miRNA) is a type of small non-coding RNA molecule that has important roles in cancer initiation, promotion and progression by negatively regulating gene expression. In this study, we explored the role of miRNAs in the prognosis of patients with non-small cell lung cancer (NSCLC). The miRNA expression profiles were determined in 5 pairs of NSCLC and paracancerous tissues (3 adenocarcinomas and 2 squamous cell carcinomas). Aberrantly expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR) in 61 pairs of NSCLC and paracancerous tissues. Differentially expressed miRNAs were further analyzed in sera from 94 healthy subjects and 94 advanced NSCLC patients receiving platinumbased chemotherapy. Three miRNAs (miR-19b, miR-146a, and miR-223) were significantly dysregulated in NSCLC tissues (P < 0.05). High miR-19b and low miR-146a expression in NSCLC tissues were associated with higher TNM stage, lymph node metastasis and poorer survival (P < 0.05). The serum levels of miR-19b in NSCLC patients were significantly higher (P < 0.001), whereas serum levels of miR-146a were significantly lower (P < 0.001), compared with those in controls. Serum levels of miR-19b and miR-146a were associated with overall survival of NSCLC patients (P < 0.05). Patients with low serum level of miR-19b and high serum level of miR-146a achieved a higher overall response rate and longer survival time (P < 0.05). These data suggest that miR-19b and miR-146a are potential biomarkers for the prediction of survival and response to chemotherapy in NSCLC.
Changes in the expression profiles of microRNAs (miRNAs) have been found in many cancers. The study was aimed to investigate the expression of miR-25, miR-223, and miR-375 in the serum of patients with esophageal squamous cell carcinoma (ESCC) and its effect on survival outcome. We examined the expression levels of miR-25, miR-223, and miR-375 in 20 pairs of ESCC cancer and matched paracancerous tissues, serum samples from 94 healthy volunteers and 194 patients with ESCC using quantitative reverse transcription polymerase chain reaction, and analyzed the relationship between expressions of serum miR-25, miR-223, and miR-375 and ESCC clinicopathological parameters as well as survival. Expressions of miR-25 and miR-223 were significantly increased in ESCC tissues compared with paracancerous tissues (P = 0.008 and 0.009, respectively), whereas the expression of miR-375 was significantly decreased in ESCC tissues compared with paracancerous tissues (P = 0.006). Expressions of serum miR-25 and miR-223 were significantly higher in ESCC patients than those in healthy controls, and, inversely, expression of serum miR-375 was significantly lower in ESCC patients than those in healthy controls (P = 0.007). High expression of serum miR-25 was significantly associated with lymph node metastasis (P = 0.01). Survival analysis showed that high expression of serum miR-223 and low expression of serum miR-375 were associated with poor survival in ESCC patients [hazard ratio (HR) = 1.717, 95% confidence intervals (CI) 1.139-2.588, P = 0.01; HR = 1.750, 95% CI 1.111-2.756, P = 0.016, respectively). Furthermore, Patients with high miR-223 and low miR-375 expression had higher risk of death than those with low miR-223 and high miR-375 expression (HR = 3.599, 95% CI 1.800-7.195, P = 2.92 × 10(-4)). In conclusion, miR-25, miR-223, and miR-375 were abnormally expressed in ESCC tissues and sera. Serum miR-223 and miR-375 are potential prognostic biomarkers for ESCC.
Taken together, these findings indicate that miRNA polymorphisms may predict prognosis in advanced ESCC patients receiving platinum-based chemotherapy.
Cotton modification exhibited great potential in the fabric dyeing industry. A bifunctional cationic polymer with a moderate cationic degree and low molecular weight was achieved via free radical polymerization between dimethyl diallyl ammonium chloride and allyl glycidyl ether. Then, it was further utilized for the modification of cotton fabrics. The formation of the cationic polymer was identified using Fourier transform infrared and nuclear magnetic resonance spectroscopies. The structure and properties of both treated and untreated cotton were analyzed by X-ray photoelectron spectroscopy and scanning electron microscopy. The modified cotton fabrics could be salt-free dyed with reactive dyes at low temperatures. While obtaining satisfactory color fastness and leveling properties, the dyeability of the modified cotton was improved significantly compared with the conventional dyeing of native cotton. Besides, the prepared cationic polymer has good flocculating properties to avoid secondary pollution, suggesting high potential for achieving an economical and eco-friendly dyeing process.
Background Non-small cell lung cancer (NSCLC) is one of the most common malignancies with the highest morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) are recently recognized as noteworthy regulators of different tumors, counting NSCLC. However, the biological functions and regulatory mechanism of lncRNA WT1-AS in NSCLC progression still stay uninvestigated. Methods WT1-AS and miR-494-3p levels in NSCLC cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). In the current study, the regulatory effects of WT1-AS/miR-494-3p axis on cellular behaviors of NSCLC cell lines (A549 and NCI-H1975) were evaluated by a variety of methods. Cell counting kit-8 (CCK-8) and EDU assays were adopted to assess NSCLC cell proliferation. Tunnel staining and flow cytometry assay were applied to determine cell apoptosis and cell cycle distribution. Besides, cell migration and invasion abilities were analyzed by performing wound healing and transwell assays. Meanwhile, the levels of key proteins related to NSCLC cell apoptosis and PTEN/PI3K/AKT pathway were examined using Western blot assay. In addition, luciferase reporter assays were used to determine the interaction between WT1-AS and miR-494-3p or miR-494-3p and PTEN. Results Visibly downregulated WT1-AS in NSCLC cell lines was obtained from Broad Institute Cancer Cell Line Encyclopedia (CCLE) database and further verified by performing RT-qPCR. Besides, miR-494-3p was the downstream target gene of WT1-AS and obviously upregulated miR-494-3p in NSCLC cell lines was confirmed. WT1-AS overexpression suppressed cell proliferation, migration and invasion abilities while enhanced cell apoptosis of A549 and NCI-H1975 cells. Furthermore, upregulation of miR-494-3p distinctly reversed these inhibitory effects of WT1-AS overexpression on the tumorigenesis and progression of NSCLC. In addition, WT1-AS promoted PTEN expression and thereby inhibited activation of PI3K/AKT pathway by sponging miR-494-3p. Conclusion To conclude, lncRNA WT1-AS impeded cell proliferation, migration, invasion but accelerated cell apoptosis via negatively regulating miR-494-3p to mediate PTEN/PI3K/AKT pathway in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.