P-glycoprotein (P-gp) is one of the major obstacles to efficiency of cancer chemotherapy. Here, we investigated whether combination of metformin and 2-deoxyglucose reverses the multidrug resistance (MDR) of K562/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced the cytotoxicity of doxorubicin against K562/Dox cells. Metformin was not a substrate of P-gp but suppressed the elevated level of P-gp in K562/Dox cells. The downregulation of P-gp may be partly attributed to the inhibition of extracellular signal-regulated kinase pathway. The addition of 2-deoxyglucose to metformin initiated a strong metabolic stress in both K562 and K562/Dox cells. Combination of metformin and 2-deoxyglucose inhibited glucose uptake and lactate production in K562 and K562/Dox cells leading to a severe depletion in ATP and a enhanced autophagy. Above all, P-gp substrate selectively aggravated this ATP depletion effect and increased cell apoptosis in K562/Dox cells. In conclusion, metformin decreases P-gp expression in K562/Dox cells via blocking phosphorylation of extracellular signal-regulated kinase. P-gp substrate increases K562/Dox cell apoptosis via aggravating ATP depletion induced by combination of metformin and 2-deoxyglucose. Our observations highlight the importance of combination of metformin and 2-deoxyglucose in reversing multidrug resistance.
Multidrug resistance(MDR) is a major obstacle to efficiency of breast cancer chemotherapy. We investigated whether combination of metformin and 2-deoxyglucose reverses MDR of MCF-7/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced cytotoxicity of doxorubicin against MCF-7/Dox cells. Combination of the two drugs resumed p53 function via inhibiting overexpression of murine doubleminute 2(MDM2) and murine doubleminute 4(MDM4) leading to G2/M arrest and apoptosis in MCF-7/Dox cells. Combination of the two drugs had no effect on P-glycoprotein mRNA expression and P-glycoprotein ATPase activity but increased doxorubicin accumulation in MCF-7/Dox cells. The increased doxorubicin accumulation maybe associate with metabolic stress. Combination of metformin and 2-deoxyglucose initiated a strong metabolic stress in MCF-7/Dox cells via inhibiting glucose uptake, lactate, fatty acid, ATP production and protein kinase B(AKT)/ mammalian target of rapamycin(mTOR) pathway. Taken together, combination of metformin and 2-deoxyglucose reverses MDR of MCF-7/Dox cells by recovering p53 function and increasing doxorubicin accumulation. Furthermore, doxorubicin selectively increases MCF-7/Dox apoptosis via aggravating metabolic stress induced by metformin plus 2-deoxyglucose. The mutually reinforcing effect made the combination of metformin and 2DG had a better effect on reversing MDR.
Recently the Salvia Miltiorrhiza–Moutan Cortex (SM‐MC) herb pair is considered as a promising Chinese medicinal mixture exhibiting a range of pharmacological activities, including treating cardiovascular disease due to its unique composition. In this study, we conducted the comparative pharmacokinetic analysis of seven main bioactive components of SM‐MC in a different model rat. A straightforward ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) strategy that could simultaneously evaluate the levels of seven compounds was used to ensure the reliability of these pharmacokinetic analyses in rat plasma. The rat plasma samples were collected from normal, sham‐operated, and myocardial ischemia–reperfusion injury (MIRI) groups at predetermined time points after the administration of SM‐MC. The main pharmacokinetic parameters were detected and calculated. We successfully assessed the maximum concentration (Cmax), time to Cmax (Tmax), the elimination rate constant (λz), total half‐life (t1/2), total body clearance (CL), and the area under the concentration–time curve from 0 to last sampling time (AUC0–t) and extrapolated to infinity (AUC0–∞). To sum up, an optimized UPLC‐MS/MS approach that could be used to rapidly, simultaneously, and sensitively detect seven bioactive compounds derived from SM‐MC extract preparations was successfully developed, which may offer a pharmacokinetic basis for preclinical and clinical studies of SM‐MC herb pair for treating MIRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.