Context: Persimmon tannin (extract of Diospyros kaki L.f [Ebenaceae]) and Aloe gel (extract of Aloe vera (L.) Burm.f. [Asphodelaceae]) are known as anti-radiation agents. However, radiation resistance of the persimmon tannin-Aloe gel composite remains inconclusive. Objective: To investigate the capacity of the persimmon tannin-Aloe gel composite to protect against ionising radiation at the cellular level. Materials and methods: HaCaT (human epidermal keratinocytes) cells were pre-treated with PT-A-1 (the mass ratio of persimmon tannin and Aloe gel was 2:1) or the single component (persimmon tannin or Aloe gel) at various concentrations (0, 50, 100, 200, 400, 800 lg/mL. Control group: medium with no HaCaT cells), and then radiated with X-rays (radiation dose: 4, 8, 12, 16, and 20 Gy). Cell viability, cell apoptosis, and radiation-induced intracellular reactive oxygen species (ROS) generation were analysed by CCK-8, Hoechst 33258 staining/flow cytometry, and 2 0 ,7 0 -dichlorfluorescein diacetate (DCFH-DA) assay, respectively, for 12 or 24 h incubation after radiation. Results: The optimal radiation dose and post-radiation incubation period were determined to be 8 Gy and 12 h. CCK-8 activity detection showed that the cell activity was 77.85% (p < 0.05, IC 50 ¼ 55.67 lg/mL). The apoptotic rate was the lowest (4.32%) at 200 lg/mL of PT-A-1 towards HaCaT cells. ROS production was the most effectively suppressed by 200 lg/mL PT-A-1 towards HaCaT cells. Discussion and conclusions: The persimmon tannin-Aloe gel composite has good radioprotective effect, and which will facilitate its clinic application as a potential natural anti-radiation agent in future.
A persimmon tannin-Aloe vera composite powder (PT-A) was investigated for its capacity to protect against ionizing radiation. Human hepatic cells (L02 cells) and human hepatoma cells (HepG2 cells) were pretreated with different concentrations of PT-A or the single compounds (PT
or Aloe vera) and radiated with X-rays. After radiation and post-incubation for 12 h or 24 h, the cell viability, apoptosis, and reactive oxygen species (ROS) production were analyzed by Cell Counting Kit 8 (CCK-8), 2′,7′-dichlorfluorescein diacetate (DCFH-DA) staining,
and Hoechst 33258 staining/flow cytometry, respectively. CCK-8 results illustrated that the optimal radiation dose L02 cells was 8 Gy for L02 cells, and the cell activity was 71.72% (IC50 = 412.1 μg/mL) after post-radiation incubation of 12 h. For HepG2 cells, the optimal radiation
dose was 8 Gy, and the cell activity was 62.37% (IC50 = 213.0 μg/mL). The cell apoptotic rate was the lowest at a PT-A concentration of 200 μg/mL in L02 cells (4.32%, P < 0.05), and at 100 μg/mL in HepG2 cells (9.80%, P < 0.05). ROS production induced
by radiation could be effectively inhibited by 200 μg/mL of PT-A in L02 cells, and by 100 μg/mL of PT-A in HepG2 cells. The PT-A composite has good radioprotective effects on cell vitality and apoptosis of X-rays radiation exposure towards L02 cells and HepG2 cells compared to the persimmon
tannin or Aloe vera. Therefore, PT-A composite might be useful as a natural, harmless anti-ionizing radiation agent, and has various clinical application prospects in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.