Key words ZnO thin films, Mg-doped, modified pechini method, band gap, photoluminescence spectra.ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg-doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey-Scherrer formula is in the range of 32.95-48.92 nm. The SEM images show that Mg-doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg-doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg-doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg-doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor-acceptor pair. These results prove that Mg-doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.
a b s t r a c tA fundamental goal of datacenter networking is to efficiently interconnect a large number of servers in a cost-effective way. Inspired by the commodity servers in today's data centers that come with dual-port, we consider how to design low-cost, robust, and symmetrical network structures for containerized data centers with dual-port servers and low-end switches. In this paper, we propose a family of such network structure called a DCube, including H-DCube and M-DCube. The DCube consists of one or multiple interconnected sub-networks, each of which is a compound graph made by interconnecting a certain number of basic building blocks by means of a hypercube-like graph. More precisely, the H-DCube and M-DCube utilize the hypercube and 1-möbius cube, respectively, while the M-DCube achieves a considerably higher aggregate bottleneck throughput compared to H-DCube. Mathematical analysis and simulation results show that the DCube exhibits graceful performance degradation as the failure rate of server or switch increases. Moreover, the DCube significantly reduces the required wires and switches compared to the BCube and fat-tree. In addition, the DCube achieves a higher speedup than the BCube does for the one-to-several traffic patterns. The proposed methodologies in this paper can be applied to the compound graph of the basic building block and other hypercube-like graphs, such as Twisted cube, Flip MCube, and fastcube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.