Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor–acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π–π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.
We report on the effect of lithium doping of zinc oxide used as electron-transport layer in organic solar cells based on both fullerene and non-fullerene acceptors. The experimental and theoretical results indicate that lithium ions intercalated within the ZnO lattice as dopants replace interstitial zinc defects that act as trap states and give rise to a higher electron conductivity without significantly altering work function and valence band edge. The enhanced electron carrier extraction/collection efficiency, the suppressed bimolecular and interface trap-assisted recombination losses and the higher electron mobility of the photoactive blend synergistically contribute to the superior performance of PTB7-Th:PC71BM-based fullerene devices utilizing doped ZnO layers with an optimized lithium concentration of 5 wt %. Such devices increased their maximum PCE from 8.59% (average 8.05%) to 10.05% (average 9.53%) while, simultaneously, boosting their long-term stability. Moreover, non-fullerene solar cells based on the PTB7-Th:IT-4F blend exhibited PCEs up to 8.96% and maintained more than 80% of their initial efficiency after 1000 h storage in the dark upon using the lithium modified ZnO electron transport layer.
Motivated by the excellent electron-transfer capability of porphyrin molecules in natural photosynthesis, we introduce here the first application of a porphyrin compound to improve the performance of planar perovskite solar cells. The insertion of a thin layer consisting of a triazine-substituted Zn porphyrin between the TiO2 electron transport layer and the CH3NH3PbI3 perovskite film significantly augmented electron transfer toward TiO2 while also sufficiently improved the morphology of the perovskite film. The devices employing porphyrin-modified TiO2 exhibited a significant increase in the short-circuit current densities and a small increase in the fill factor. As a result, they delivered a maximum power conversion efficiency (PCE) of 16.87% (average 14.33%), which represents a 12% enhancement compared to 15.01% (average 12.53%) of the reference cell. Moreover, the porphyrin-modified cells exhibited improved hysteretic behavior and a higher stabilized power output of 14.40% compared to 10.70% of the reference devices. Importantly, nonencapsulated perovskite solar cells embedding a thin porphyrin interlayer showed an elongated lifetime retaining 86% of the initial PCE after 200 h, while the reference devices exhibited higher efficiency loss due to faster decomposition of CH3NH3PbI3 to PbI2.
Photocatalytic water splitting for hydrogen production is an emerging and promising strategy for converting solar energy into chemical fuels. To that end, the development of robust and highly active semiconductor materials is of eminent importance in this field. Here, we demonstrate high-surface-area mesoporous networks comprising interconnected β-Ni(OH)2 modified CdS nanocrystals (NCs) as highly active and stable photocatalysts for hydrogen generation. Compared to single-component CdS assemblies, Ni-modified materials present a strong enhancement of photocatalytic performance for hydrogen evolution under visible light irradiation (λ ≥ 420 nm). By controlling the formation of β-Ni(OH)2 species, the mesoporous β-Ni(OH)2/CdS heterojunction networks at a 10 wt % Ni content reached an outstanding photocatalytic H2-evolution rate of 1.4 mmol h–1 at 20 °C (or ∼35 mmol g–1 h–1 mass activity), associated with an apparent quantum yield (QY) of 72% at 420 nm in a 5 M NaOH aqueous solution containing 10% v/v ethanol as sacrificial reagent. Mechanistic study with UV–vis/near-infrared, photoluminescence, and electrochemical impedance spectroscopy and photocatalytic performance evaluation reveals that the improved photocatalytic performance arises from the strong electronic coupling and charge-transferred states at the p–n β-Ni(OH)2/CdS heterojunctions. These β-Ni(OH)2 modified CdS mesoporous assemblies have important implications for renewable hydrogen generation technologies.
ZnO is a widely used metal-oxide semiconductor for photovoltaic application. In solar cell heterostructures they not only serve as a charge selective contact, but also act as electron acceptor. Although ZnO offers a suitable interface for exciton dissociation, charge separation efficiencies have stayed rather poor and conceptual differences to organic acceptors are rarely investigated. In this work, we employ Sn doping to ZnO nanowires in order to understand the role of defect and surface states in the charge separation process. Upon doping we are able to modify the metal-oxide work function and we show its direct correlation with the charge separation efficiency. For this purpose, we use the polymer poly(3-hexylthiophene) as donor and the squaraine dye SQ2 as interlayer. Interestingly, neither mobilities nor defects are prime performance limiting factor, but rather the density of available states around the conduction band is of crucial importance for hybrid interfaces. This work highlights crucial aspects to improve the charge generation process of metal-oxide based solar cells and reveals new strategies to improve the power conversion efficiency of hybrid solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.