Because of CD linearity requirements, proximity effect correction (PEC) will be mandatory for most critical layers when e-beam maskmaking is used. For the MEBES 5000 system, the method chosen for PEC is the GHOST"2'3 PEC algorithm.ABSTRACT Advanced reticle specifications for resolution, critical dimension (CD) control and CD linearity of 1 80-nm generation devices require large-scale improvements to maskmaking processes. The -200 nm of bias required with widely used wet etch processes will not meet these specifications. A solution to the high bias requirement of wet etch processing is to implement a plasma or dry etch process. Plasma etch processing has been shown to have little or no undercutting. However, some of the standard resists used with electron beam (e-beam) exposure of photomasks have poor dry etch characteristics. ZEP 7000 is an e-beam resist that has good dry etch resistance while exhibiting superior lithographic quality. In this paper, processes using ZEP 7000 resist and inductively coupled plasma (ICP) etching are described. The combination of these operations can result in zero bias or near zero bias process with e-beam exposure of photomasks.While the required dose for ZEP 7000 is higher than that of PBS, the higher beam current capability of newer e-beam systems, together with multipass writing strategies, enables the use of these slower resists without throughput penalty. Optimization of the development process was done using a two-component solvent developer. A puddle process was investigated for optimizing sensitivity, edge slope, resist loss, mean-to-target control, and CD uniformity. Dry etching with ICP has been shown to etch chromium films with good selectivity to the resist, give a highly anisotropic etch, and, most significantly, show insensitivity to loading effects. The net result of this effort is the development of a process that gives excellent CD control when meeting MEBES 5000 system requirements for 1 80-nm maskmaking. Data on resolution, CD control, and defects are presented using this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.