Abstract-In this paper, we present COFFE (Circuit Optimization For FPGA Exploration), a new fully-automated transistor sizing tool for FPGAs. Automated transistor-level CAD tools are an important part of the architecture exploration flow because they provide accurate area and delay estimates of low-level FPGA circuitry, which must be obtained for each architecture. We show that modeling transistors as linear resistances and capacitances as has been done in previous FPGA transistor sizing tools is highly inaccurate for fine-grained transistor-level design in advanced process nodes. Therefore, COFFE's transistor sizing algorithm maintains circuit non-linearities by relying exclusively on HSPICE simulations to measure delay. Area is estimated with a transistor size-based model that incorporates a number of improvements to enhance its accuracy in advanced process technologies versus prior methods. In addition to more accurate area and delay estimation, COFFE considers more layout effects than prior published work by automatically accounting for transistor and wire loads, which are computed based on architectural parameters and layout area. This new FPGA transistor sizing tool requires only several hours to produce high-quality transistor sizing results for an entire FPGA tile; a task that would normally take months of manual effort. We demonstrate COFFE's utility in FPGA architecture studies by investigating an important new architectural question at the logic-to-routing interface.
Pass-transistors have been the key building block for fieldprogrammable gate array (FPGA) circuitry for many years due to the very small switch they enable. However, passtransistor performance and reliability have been degrading with technology scaling. Transmission gates are an alternative to pass-transistors; while larger, they are more robust. We develop a new FPGA circuit optimization flow and use it to investigate the area, delay and power impact of building FPGAs out of transmission gates instead of pass-transistors in a 22nm process. Our results show that transmission gate FPGAs are 15% larger than pass-transistor FPGAs but are 10-25% faster depending on the allowable level of "gate boosting". Without gate boosting, transmission gate FPGAs are the better option with 14% lower area-delay product. If 200mV of gate boosting is possible however, pass-transistor FPGAs remain the slightly better choice with a 2% better area-delay product. We also show that transmission gates with a separate power supply for their gate terminal enable a low-voltage FPGA with 50% less power and good delay.
Abstract-Hardened adder and carry logic is widely used in commercial FPGAs to improve the efficiency of arithmetic functions. There are many design choices and complexities associated with such hardening, including circuit design, FPGA architectural choices, and the CAD flow. There has been very little study, however, on these choices and hence we explore a number of possibilities for hard adder design. We also highlight optimizations during front-end elaboration that help ameliorate the restrictions placed on logic synthesis by hardened arithmetic. We show that hard adders and carry chains, when used for simple adders, increase performance by a factor of four or more, but on larger benchmark designs that contain arithmetic, improve overall performance by roughly 15%. We measure an average area increase of 5% for architectures with carry chains but believe that better logic synthesis should reduce this penalty. Interestingly, we show that adding dedicated inter-logic-block carry links or fast carry look-ahead hardened adders result in only minor delay improvements for complete designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.