Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures at the global scale, which accounts for the influence of different flood risk drivers (namely sea-level rise, subsidence, and socioeconomic change). Globally, we find that the estimated expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080 if we assume that no adaptation takes place. We find that 15 countries account for approximately 90 % of this increase. We then explore four different adaptation objectives and find that they all show high potential in cost-effectively reducing (future) coastal flood risk at the global scale. Attributing the total costs for optimal protection standards, we find that sea-level rise contributes the most to the total costs of adaptation. However, the other drivers also play an important role. The results of this study can be used to highlight potential savings through adaptation at the global scale.
This report explores some of the thorniest water crises taking place across the developing world. In southern Iraq, severe water quality problems have triggered social unrest and violent protests. Recent droughts in India have prompted an exodus of farmers from the countryside in Maharashtra and dried up the reservoirs serving the city of Chennai. Across the African Sahel, there are violent conflicts between farmers and pastoralists over water and productive land resources. In Yemen, urban water systems have been targets of persistent attacks during the ongoing conflict in the country. Drawing on the report’s six in-depth case studies — from Iraq, Iran, India, the African Sahel, Central America and Yemen — as well as other recent research, the authors identify strategies to reduce water-related security risks. These solutions are organized into four broad categories: natural resources, science and engineering approaches; political and legal tools; economic and financial tools; and policy and governance strategies. The framework presented in this report provides decision-makers with options for tailoring solution sets to unique water challenges. It is intended for global development, diplomacy, defense and disaster response experts, as well as for national- and river basin-level decision-makers charged with addressing natural resource–based conflict, migration and other forms of insecurity. This report is research for action. It provides the evidence, examples and solution-oriented analysis that decision-makers need to avert water crises around the world. As the costs of inaction rise, policymakers should work to overcome barriers to implementation by increasing political will and recognizing the benefits of improved water resources management, drought response, flood prevention and access to safe, reliable and affordable water for all.
Small and medium-sized reservoirs play an important role in water systems that need to cope with climate variability and various other man-made and natural challenges. Although reservoirs and dams are criticized for their negative social and environmental impacts by reducing natural flow variability and obstructing river connections, they are also recognized as important for social and economic development and climate change adaptation. Multiple studies map large dams and analyze the dynamics of water stored in the reservoirs behind these dams, but very few studies focus on small and medium-sized reservoirs on a global scale. In this research, we use multi-annual multi-sensor satellite data, combined with cloud analytics, to monitor the state of small (10–100 ha) to medium-sized (> 100 ha, excluding 479 large ones) artificial water reservoirs globally for the first time. These reservoirs are of crucial importance to the well-being of many societies, but regular monitoring records of their water dynamics are mostly missing. We combine the results of multiple studies to identify 71,208 small to medium-sized reservoirs, followed by reconstructing surface water area changes from satellite data using a novel method introduced in this study. The dataset is validated using 768 daily in-situ water level and storage measurements (r2 > 0.7 for 67% of the reservoirs used for the validation) demonstrating that the surface water area dynamics can be used as a proxy for water storage dynamics in many cases. Our analysis shows that for small reservoirs, the inter-annual and intra-annual variability is much higher than for medium-sized reservoirs worldwide. This implies that the communities reliant on small reservoirs are more vulnerable to climate extremes, both short-term (within seasons) and longer-term (across seasons). Our findings show that the long-term inter-annual and intra-annual changes in these reservoirs are not equally distributed geographically. Through several cases, we demonstrate that this technology can help monitor water scarcity conditions and emerging food insecurity, and facilitate transboundary cooperation. It has the potential to provide operational information on conditions in ungauged or upstream riparian countries that do not share such data with neighboring countries. This may help to create a more level playing field in water resource information globally.
Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures at the global scale, which accounts for the influence of different flood risk drivers (namely: sea-level rise, subsidence, and socioeconomic change). Globally, we find that the estimated expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080, if we assume that no adaptation takes place. We find that 15 countries account for approximately 90 % of this increase. We then explore four different adaptation objectives and find that they all show high potential to cost-effectively reduce (future) coastal flood risk at the global scale. Attributing the total costs for optimal protection standards, we find that sea-level rise contributes the most to the total costs of adaptation. However, the other drivers also play an important role. The results of this study can be used to highlight potential savings through adaptation at the global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.