The diffi culty in long-term expansion of mesenchymal stem cells (MSCs) using standard culture systems without the loss of their stem cell properties suggests that a critical feature of their microenvironment necessary for retention of stem cell properties is absent in these culture systems. We report here the reconstitution of a native extracellular matrix (ECM) made by human marrow cells ex vivo, which consists of at least collagen types I and III, fi bronectin, small leucine-rich proteoglycans such as biglycan and decorin, and major components of basement membrane such as the large molecular weight proteoglycan perlecan and laminin. Expansion of human MSCs on this ECM strongly promoted their proliferation, retained their stem cell properties with a low level of reactive oxygen species (ROS), and substantially increased their response to BMP-2. The quality of the expanded cells following each passage was further tested by an in vivo transplantation assay. The results showed that MSCs expanded on the ECM for multiple passages still retained the same capacity for skeletogenesis. In contrast, the bone formation capacity of cells expanded on plastic was dramatically diminished after 6-7 passages. These fi ndings suggest that the marrow stromal cell-derived ECM is a promising matrix for expanding largescale highly functional MSCs for eventual use in stem cell-based therapy. Moreover, this system should also be invaluable for establishment of a unique tissue-specifi c ECM, which will facilitate control of the fate of MSCs for therapeutic applications.
The goal of this study was to investigate Cannabidiol (CBD) hepatotoxicity in 8-week-old male B6C3F1 mice. Animals were gavaged with either 0, 246, 738, or 2460 mg/kg of CBD (acute toxicity, 24 h) or with daily doses of 0, 61.5, 184.5, or 615 mg/kg for 10 days (sub-acute toxicity). These doses were the allometrically scaled mouse equivalent doses (MED) of the maximum recommended human maintenance dose of CBD in EPIDIOLEX® (20 mg/kg). In the acute study, significant increases in liver-to-body weight (LBW) ratios, plasma ALT, AST, and total bilirubin were observed for the 2460 mg/kg dose. In the sub-acute study, 75% of mice gavaged with 615 mg/kg developed a moribund condition between days three and four. As in the acute phase, 615 mg/kg CBD increased LBW ratios, ALT, AST, and total bilirubin. Hepatotoxicity gene expression arrays revealed that CBD differentially regulated more than 50 genes, many of which were linked to oxidative stress responses, lipid metabolism pathways and drug metabolizing enzymes. In conclusion, CBD exhibited clear signs of hepatotoxicity, possibly of a cholestatic nature. The involvement of numerous pathways associated with lipid and xenobiotic metabolism raises serious concerns about potential drug interactions as well as the safety of CBD.
SummaryWe generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO ob ) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO ob mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO ob osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (a-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in a-SMA + MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.
DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation – proton (0.1 Gy, 150 MeV, dose rate 0.53±0.08 Gy/min), and heavy iron ions (56Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38±0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or 56Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with 56Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.
The goal of this study was to investigate the potential for a cannabidiol-rich cannabis extract (CRCE) to interact with the most common over-the-counter drug and the major known cause of drug-induced liver injury–acetaminophen (APAP)–in aged female CD-1 mice. Gavaging mice with 116 mg/kg of cannabidiol (CBD) [mouse equivalent dose (MED) of 10 mg/kg of CBD] in CRCE delivered with sesame oil for three consecutive days followed by intraperitoneally (i.p.) acetaminophen (APAP) administration (400 mg/kg) on day 4 resulted in overt toxicity with 37.5% mortality. No mortality was observed in mice treated with 290 mg/kg of CBD+APAP (MED of 25 mg/kg of CBD) or APAP alone. Following CRCE/APAP co-administration, microscopic examination revealed a sinusoidal obstruction syndrome-like liver injury–the severity of which correlated with the degree of alterations in physiological and clinical biochemistry end points. Mechanistically, glutathione depletion and oxidative stress were observed between the APAP-only and co-administration groups, but co-administration resulted in much greater activation of c-Jun N-terminal kinase (JNK). Strikingly, these effects were not observed in mice gavaged with 290 mg/kg CBD in CRCE followed by APAP administration. These findings highlight the potential for CBD/drug interactions, and reveal an interesting paradoxical effect of CBD/APAP-induced hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.