We have developed a method for the partial automation of DNA sequence analysis. Fluorescence detection of the DNA fragments is accomplished by means of a fluorophore covalently attached to the oligonucleotide primer used in enzymatic DNA sequence analysis. A different coloured fluorophore is used for each of the reactions specific for the bases A, C, G and T. The reaction mixtures are combined and co-electrophoresed down a single polyacrylamide gel tube, the separated fluorescent bands of DNA are detected near the bottom of the tube, and the sequence information is acquired directly by computer.
Nick-translation PCR was performed with fluorogenic probes. Two probes were used: one complementary to a sequence containing the F508 codon of the normal human cystic fibrosis (CF) gene (wt DNA) and one complementary to a sequence containing the delta F508 three base pair deletion (mut DNA). Each probe contained a unique and spectrally resolvable fluorescent indicator dye at the 5' end and a common quencher dye attached to the seventh nucleotide from the 5' end. The F508/delta F508 site was located between the indicator and quencher. The probes were added at the start of a PCR containing mut DNA, wt DNA or heterozygous DNA and were degraded during thermal cycling. Although both probes were degraded, each probe generated fluorescence from its indicator dye only when the sequence between the indicator and quencher dyes was perfectly complementary to target. The identify of the target DNA could be determined from the post-PCR fluorescence emission spectrum.
The cytochrome P-450 class of heme proteins are important hydroxylating enzymes involved in detoxification, drug metabolism, carcinogenesis, and steroid biosynthesis.1 The compounds are named for the red shifted Soret band of the CO-ferrous derivatives, occurring at wavelengths 30 nm longer than the usual CO-heme complex. This prominent optical feature plays an important role in biochemical assays of the protein and in characterizing synthetic porphyrin analogues.2-4
The incorporation of fluorescently labeled dideoxynucleotides by T7 DNA polymerase is optimized by the use of Mn2+, fluorescein analogs and four 2'-deoxyribonucleoside 5'-O-(1-thiotriphosphates) (dNTP alpha S's). The one-tube extension protocol was tested on single-stranded templates, as well as PCR fragments which were made single-stranded by digestion with T7 gene 6 exonuclease. Dye primer sequencing using four dNTP alpha S's was shown to give uniform termination patterns which were comparable to four dNTPs. Efficiency of the polymerase also appeared to improve with the dNTP alpha S's. A mathematical model was developed to predict the pattern of termination based on enzyme activity and ratios of ddNTP/dNTPs. This method can be used to optimize sequencing reactions and to estimate enzyme discrimination constants of chain terminators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.