The outbreak of COVID-19 poses unprecedent challenges to global health 1 . The new coronavirus, SARS-CoV-2, shares high sequence identity to SARS-CoV and a bat coronavirus RaTG13 2 . While bats may be the reservoir host for various coronaviruses 3,4 , whether SARS-CoV-2 has other hosts remains ambiguous. In this study, one coronavirus isolated from a Malayan pangolin showed 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S genes, respectively. In particular, the receptor-binding domain within the S protein of the Pangolin-CoV is virtually identical to that of SARS-CoV-2, with one noncritical amino acid difference. Results of comparative genomic analysis suggest that SARS-CoV-2 might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. The Pangolin-CoV was detected in 17 of 25 Malayan pangolins analyzed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against Pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus that is highly related to SARS-CoV-2 in pangolins suggests that they have the potential to act as the intermediate host of SARS-CoV-2. The newly identified coronavirus in the most-trafficked mammal could represent a future threat to public health if wildlife trade is not effectively controlled.As coronaviruses (CoVs) are common in mammals and birds 5 , we used the whole genome sequence of SARS-CoV-2 (WHCV; GenBank accession No. MN908947) in a Blast search of SARS-relate CoV (SARSr-CoV) sequences in available mammalian and avian viromic, metagenomic, and transcriptomic data. This led to the identification of 34 highly related contigs in a set of pangolin viral metagenomes (Extended
Background It has been well established that circular RNAs (circRNAs) play an important regulatory role during tumor progression. Recent studies have indicated that even though circRNAs generally regulate gene expression through miRNA sponges, they may encode small peptides in tumor pathogenesis. However, it remains largely unexplored whether circRNAs are involved in the tumorigenesis of colon cancer (CC). Methods The expression profiles of circRNAs in CC tissues were assessed by circRNA microarray. Quantitative real-time PCR, RNase R digestion assay and tissue microarray were used to confirm the existence and expression pattern of circPPP1R12A. The subcellular distribution of circPPP1R12A was analyzed by nuclear mass separation assay and fluorescence in situ hybridization (FISH). SDS-PAGE and LC/MS were employed to evaluate the protein-coding ability of circPPP1R12A. CC cells were stably transfected with lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPPP1R12A and its encoded protein circPPP1R12A-73aa. RNA-sequencing and Western blotting analysis were furthered employed to identify the critical signaling pathway regulated by circPPP1R12A-73aa. Results We firstly screened the expression profiles of human circRNAs in CC tissues and found that the expression of hsa_circ_0000423 (termed as circPPP1R12A) was significantly increased in CC tissues. We also found that circPPP1R12A was mostly localized in the cytoplasm of CC cells. Kaplan–Meier analysis showed that patients with higher levels of circPPP1R12A had a significantly shorter overall survival. By gain- and loss-of-function approaches, the results suggested that circPPP1R12A played a critical role in proliferation, migration and invasion of CC cells. Furthermore, we showed that circPPP1R12A carried an open reading frame (ORF), which encoded a functional protein (termed as circPPP1R12A-73aa). Next, we found that PPP1R12A-C, not circPPP1R12A, promoted the proliferation, migration and invasion abilities of CC in vitro and in vivo. Finally, we identified that circPPP1R12A-73aa promoted the growth and metastasis of CC via activating Hippo-YAP signaling pathway. In addition, the YAP specific inhibitor Peptide 17 dramatically alleviated the promotive effect of circPPP1R12A-73aa on CC cells. Conclusions In the present study, we illustrated the coding-potential of circRNA circPPP1R12A in the progression of CC. Moreover, we identified that circPPP1R12A-73aa promoted the tumor pathogenesis and metastasis of CC via activating Hippo-YAP signaling pathway. Our findings might provide valuable insights into the development of novel potential therapeutic targets for CC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1010-6) contains supplementary material, which is available to auth...
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc −/− ) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs. Keywords: CRISPR-Cas9; spermatogonial stem cell; gene therapy Cell Research (2015) IntroductionSpermatogonial stem cells (SSCs) can self-renew and undergo spermatogenesis, leading to the production of numerous spermatozoa, which transmit the genetic information to the next generation [1,2]. SSCs from different species can be maintained in vitro for long periods of time in medium supplemented with glial cell line-derived neurotrophic factor (GDNF) [3][4][5][6][7]. Meanwhile, after transplantation into the testes of an infertile male, cultured SSCs can re-establish spermatogenesis and restore fertility [1,8,9]. As genetic manipulation of SSCs and the subsequent transplantation allow one to select for desired genetic modifications, these techniques hold great promise in producing gene-modified animal models and particularly in treating genetic diseases with the potential of generating healthy progeny at 100% efficiency [1,10]. However, so far there have been very limited reports of using these techniques for efficient production of gene-modified animals [11,12], and their use in genetic disease correction has not yet been reported, partially due to complexity and low efficiency of currently available genetic editing techniques.Recently, the CRISPR-Cas9 system from bacteria has enabled rapid genome editing in different species at a very high efficiency and specificity [13][14][15][16][17]. CRIS-PR-Cas9-mediated genome editing requires only a short single-guide RNA (sgRNA) to guide site-specific DNA recogni...
Triple-negative breast cancer (TNBC) exhibits poor prognosis, with high metastasis and low survival. Long non-coding RNAs (lncRNAs) play critical roles in tumor progression. Here, we identified lncRNA MIR100HG as a pro-oncogene for TNBC progression. Knockdown of MIR100HG decreased cell proliferation and induced cell arrest in the G1 phase, whereas overexpression of MIR100HG significantly increased cell proliferation. Furthermore, MIR100HG regulated the p27 gene to control the cell cycle, and subsequently impacted the progression of TNBC. In analyzing its underlying mechanism, bioinformatics prediction and experimental data demonstrated that MIR100HG participated in the formation of RNA–DNA triplex structures. MIR100HG in The Cancer Genome Atlas (TCGA) and breast cancer cell lines showed higher expression in TNBC than in other tumor types with poor prognosis. In conclusion, our data indicated a novel working pattern of lncRNA in TNBC progression, which may be a potential therapeutic target in such cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.