Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called “rescue”). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germ line is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.
Terahertz time-domain spectroscopy was employed to investigate photogenerated excitons in PbSe and CdSe quantum dots (QD) of radii less than their exciton Bohr radius. The exciton response was found to be "atom"like and rise with increasing the carrier effective mass. Excitons in CdSe were found to be about two times more polarizable than those in PbSe QDs of equal size. These experimental findings including both the magnitude of the exciton polarizability and its variation with the QD radius were well described by an effective mass model with multiband structures of the QD materials.
It aims to explore the toxicity and mechanism of large-surface-area MSiNPs and MSiNPs-Ag+ exposed to hCEC cells and cornea. A protein corona-based therapy was proposed to treat MSiNPs and MSiNPs-Ag+ induced corneal damage and dry eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.