The relationship between Rhododendron simsii and its soil microbial community under heat stress was not clear. In this study, the effects of heat stress on the physiological characteristics, soil physicochemical properties and soil microbial community structure of R. simsii were investigated. The experimental control (CK) was set as day/night (14/10 h) 25/20°C and experimental treatments were set as light heat stress (LHS) 35/30°C and high heat stress (HHS) 40/35°C. Our results showed that, compared with CK, LHS treatment significantly increased malondialdehyde, hydrogen peroxide, proline and soluble sugar contents, as well as catalase and peroxidase activities, while HHS treatment significantly increased ascorbate peroxidase activity and decreased chlorophyll content. Compared with CK, LHS treatment significantly reduced soil ammonium-nitrogen and nitrate-nitrogen content, while HHS significantly increased soil ammonium-nitrogen content. Compared with CK, both treatments changed the soil microbial community structure. For bacterial community, LHS and HHS treatment resulting in the significant enrichment of Burkholderia-Caballeronia-Paraburkholderia and Occallatibacte, respectively. For fungal community, LHS treatment resulting in the significant enrichment of Candida, Mortierella and Boothiomyces. The redundancy analysis showed that plant physiological characteristics, soil ammonium-nitrogen content were significantly correlated with the soil microbial community. Therefore, heat stress altered the soil microbial community structure, and affected the availability of soil available nitrogen, which in turn affected the physiological characteristics of R. simsii. We suggest that soil microbial community may play an important role in plant resistance to heat stress, and its mechanism deserves further study.
This paper studies a stochastic predator-prey model for integrated pest management. It shows that the system has a positive solution that exists globally. The long time behavior of the system is investigated, and a condition for the pest to go extinct is given. Then the numerical simulations are carried out to illustrate our theoretical results and facilitate their interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.