There are limited researches focusing on microvascular patterns (MVPs) in human glioblastoma and their prognostic impact. We evaluated MVPs of 78 glioblastomas by CD34/periodic acid-Schiff dual staining and by cluster analysis of the percentage of microvascular area for distinct microvascular formations. The distribution of 5 types of basic microvascular formations, that is, microvascular sprouting (MS), vascular cluster (VC), vascular garland (VG), glomeruloid vascular proliferation (GVP), and vasculogenic mimicry (VM), was variable. Accordingly, cluster analysis classified MVPs into 2 types: type I MVP displayed prominent MSs and VCs, whereas type II MVP had numerous VGs, GVPs, and VMs. By analyzing the proportion of microvascular area for each type of formation, we determined that glioblastomas with few MSs and VCs had many GVPs and VMs, and vice versa. VG seemed to be a transitional type of formation. In case of type I MVP, expression of Ki-67 and p53 but not MGMT was significantly higher as compared with those of type II MVP (P < .05). Survival analysis showed that the type of MVPs presented as an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) (both P < .001). Type II MVP had a more negative influence on PFS and OS than did type I MVP. We conclude that the heterogeneous MVPs in glioblastoma can be categorized properly by certain histopathologic and statistical analyses and may influence clinical outcome.
Recently, hydrogels (alginate, agarose, polyethylene glycol, etc.) have been investigated as promising cartilage-healing materials. To further improve cell-material interactions or mechanical properties of such hydrogel scaffolds, many materials (such as ceramics or carbon nanotubes) have been added to produce composites with tailored properties. In this study, rosette nanotubes (RNTs, self-assembled nanotubes built from DNA base pairs), hydrogels, and cells (specifically, fibroblast-like type-B synoviocytes [SFB cells] and chondrocytes) were combined via a novel electrospinning technique to generate three-dimensional implantable scaffolds for cartilage repair. Importantly, results of this study showed that electrospun RNT/hydrogel composites improved both SFB cell and chondrocyte functions. RNT/hydrogel composites promoted SFB cell chondrogenic differentiation in 2 week culture experiments. Further, studies demonstrated that RNTs enhanced hydrogel adhesive strength to severed collagen. Results of this study thus provided a nanostructured scaffold that enhanced SFB cell adhesion, viability, and chondrogenic differentiation compared to nanosmooth hydrogels without RNTs. This study provided an alternative cartilage regenerative material derived from RNTs that could be directly electrospun into cartilage defects (with SFB cells and/or chondrocytes) to bond to severed collagen and promote cell adhesion, viability, and subsequent functions.
Figure 4. Diversity of the organic compositions of LMMCs. (a) Classification of the organic compositions of LMMCs based on the hygroscopic response. [Adapted with permission from ref 55. Copyright 2018, American Chemical Society, Washington, DC.] (b) Ratios of organic compositions of LMMCs from four types of spiders living in habitats with different humidity. [Adapted with permission from ref 37.
Claudin-3 expression is associated with gastric cancer progression, but the role of epigenetic modifications remains unclear. We investigated methylation of the claudin-3 promoter and expression profiles in gastric adenocarcinoma and their associations with clinicopathological characteristics and prognosis of the patients. A total of 122 patients with advanced gastric cancer [stage IIB-IV, with lymph node (LN) metastasis] were enrolled. Each patient provided 4 tissue samples: normal gastric epithelium, intestinal metaplasia, primary tumor and metastatic LN. Claudin-3 protein expression was examined by immunohistochemistry. Claudin-3 promoter methylation was determined by methylation-specific PCR and verified by bisulfite sequencing PCR. Claudin-3 mRNA expression was measured by real-time PCR in a subset of cases, and its correlation with protein expression was analyzed using Spearman correlation. Kaplan-Meier survival analysis was performed (log-rank test). Factors associated with survival were identified by Cox regression. The strong expression rate of claudin-3 in intestinal metaplasia, primary tumor, metastatic LN and normal gastric epithelium was 91.8, 58.2, 30.3 and 13.9%, respectively. The promoter hypermethylation rate in intestinal metaplasia, primary tumor, normal gastric epithelium and metastatic LN was 5.7, 27.9, 36.9 and 49.2%, respectively. Claudin-3 mRNA and protein expression were positively correlated (P<0.001) with normal gastric epithelium (rs=0.745), intestinal metaplasia (rs=0.876), primary gastric adenocarcinoma (rs=0.915) and metastatic LN (rs=0.819). Claudin-3 mRNA expression was negatively correlated with claudin-3 promoter methylation. Median patient survival was 38, 22 and 11 months in the hypomethylated, partially methylated and hypermethylated groups, respectively (P<0.001). Claudin-3 promoter methylation status (HR: 5.67; 95% CI: 2.27–14.17) but not claudin-3 expression was an independent predictor of survival. Claudin-3 promoter hypermethylation reduces claudin-3 expression and independently predicts poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.