Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.DOI: http://dx.doi.org/10.7554/eLife.23361.001
Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) metabolism, evolved in streptophyte algae—the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens. Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.
SummaryMaintaining potassium (K + ) nutrition and a robust guard cell K + inward channel activity is considered critical for plants' adaptation to fluctuating and challenging growth environment. ABA induces stomatal closure through hydrogen peroxide and nitric oxide (NO) along with subsequent ion channel-mediated loss of K + and anions. However, the interactions of NO synthesis and signalling with K + nutrition and guard cell K + channel activities have not been fully explored in Arabidopsis. Physiological and molecular techniques were employed to dissect the interaction of nitrogen and potassium nutrition in regulating stomatal opening, CO 2 assimilation and ion channel activity. These data, gene expression and ABA signalling transduction were compared in wildtype Columbia-0 (Col-0) and the nitrate reductase mutant nia1nia2.Growth and K + nutrition were impaired along with stomatal behaviour, membrane transport, and expression of genes associated with ABA signalling in the nia1nia2 mutant. ABA-inhibited K + in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for complete stomatal closure in nia1nia2.While NO is an important signalling component in ABA-induced stomatal closure in Arabidopsis, our findings demonstrate a more complex interaction associating potassium nutrition and nitrogen metabolism in the nia1nia2 mutant that affects stomatal function.
Silicon (Si) has been widely reported to improve plant resistance to water stress via various mechanisms including cuticular Si deposition to reduce leaf transpiration. However, there is limited understanding of the effects of Si on stomatal physiology, including the underlying mechanisms and implications for resistance to water stress. We grew tall fescue (Festuca arundinacea Schreb. cv. Fortuna) hydroponically, with or without Si, and treated half of the plants with 20% polyethylene glycol to impose physiological drought (osmotic stress). Scanning electron microscopy in conjunction with X‐ray mapping found that Si was deposited on stomatal guard cells and as a sub‐cuticular layer in Si‐treated plants. Plants grown in Si had a 28% reduction in stomatal conductance and a 23% reduction in cuticular conductance. When abscisic acid was applied exogenously to epidermal leaf peels to promote stomatal closure, Si plants had 19% lower stomatal aperture compared to control plants (i.e. increased stomatal sensitivity) and an increased efflux of guard cell K+ ions. However, the changes in stomatal physiology with Si were not substantial enough to improve water stress resistance, as shown by a lack of significant effect of Si on water potential, growth, photosynthesis and water‐use efficiency. Our findings suggest a novel underlying mechanism for reduced stomatal conductance with Si application; specifically, that Si deposition on stomatal guard cells promotes greater stomatal sensitivity as mediated by guard cell K+ efflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.