This paper describes an on-chip intellectual property (IP) testing platform, Universal High Frequency Test structure (UHFTs), which makes logic, memory, and analog / mixed-signal IPs at-speed testable in the same testing structure. Any functional testing pattern can be loaded from an external pattern generator or a tester through standard 5-pin JTAG interfaces operating at 10MHz or below. The on-chip multichannel JTAG interface and elastic buffers convert an externally supplied pattern to an on-chip at-speed high-frequency pattern. The pattern can have address, data, and control fields. Each field is applied as input to a DUT in any one of 16 available DUT sites, fully synchronized to the on-chip global clock. The output from the DUT is captured at-speed and stored in an output buffer. The content of the output buffer is read out to an external tester through the elastic-buffer and JTAG interfaces under a program control. UHFTs, implemented in TSMC 28-nm High Performance CMOS process, has been successfully used in digital, including ATPG, BIST, and vector-based tests with the capability of mixed-signal and analog tests. UHFTs have been designed with a frequency goal of 4 GHz in TSMC 28-nm CMOS process in the slow corner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.