Chinese sacbrood virus (CSBV) was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of CSBV is 8863 nucleotides in length and contains a single large open reading frame encoding a 319.614 kDa polyprotein. The coding sequence is flanked by a 178-nucleotide 5′ nontranslated leader sequence and a 142-nucleotide 3′ nontranslated region, followed a poly(A) tail. Four major structural proteins, VP1,VP2, VP3 and VP4, were predicted in the N-teminal of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs which is a typical and well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. Genetic analysis shows that the CSBV-LN had a 13-amino-acid deletion at amino acid positions 710–719 and 727–729 in comparison with CSBV-GZ and SBV-UK, and the SBV-UK had a 7-amino-acid deletion at amino acid positions 2124–2132 in comparison with CSBV-GZ and CSBV-LN, and the CSBV-GZ and CSBV-LN had a 6-amino-acid deletion at amino acid positions 2143–2150 in comparison with SBV-UK. Phylogenetic analysis using RdRp of selected picorna-like viruses shows that CSBV/SBV and Deformed Wing Virus (DWV) tend to group together, which possesses an RNA of similar size and gene order.
The delivery of therapeutics through the circulatory system is one of the least arduous and less invasive interventions; however, this approach is hampered by low vascular density or permeability. In this study, by exploiting the ability of monocytes to actively penetrate into diseased sites, we designed aptamer-based lipid nanovectors that actively bind onto the surface of monocytes and are released upon reaching the diseased sites. Our method was thoroughly assessed through treating two of the top causes of death in the world, cardiac ischemia-reperfusion injury and pancreatic ductal adenocarcinoma with or without liver metastasis, and showed a significant increase in survival and healing with no toxicity to the liver and kidneys in either case, indicating the success and ubiquity of our platform. We believe that this system provides a new therapeutic method, which can potentially be adapted to treat a myriad of diseases that involve monocyte recruitment in their pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.