This paper proposes a small-slot antenna system (50 mm × 9 mm × 2.7 mm) for 4 × 4 multiple-input multiple-output (MIMO) on smart glasses devices. The antenna is set on the plastic temple, and the inverted F antenna radiates through the slot in the ground plane of the sputtered copper layer outside the temple. Two symmetrical antennas and slots on the same temple and series capacitive elements enhance the isolation between the two antenna ports. When both temples are equipped with the proposed antennas, 4 × 4 MIMO transmission can be achieved. The antenna substrate is made of polycarbonate (PC), and its thickness is 2.7 mm εr=2.85, tanδ=0.0092. According to the actual measurement results, this antenna has two working frequency bands when the reflection coefficient is lower than −10dB, its working frequency bandwidth at 4.58–5.72 GHz and 6.38–7.0 GHz. The proposed antenna has a peak gain of 4.3 dBi and antenna efficiency of 85.69% at 5.14 GHz. In addition, it also can obtain a peak gain of 3.3 dBi and antenna efficiency of 82.78% at 6.8 GHz. The measurement results show that this antenna has good performance, allowing future smart eyewear devices to be applied to Wi-Fi 5G (5.18–5.85 GHz) and Wi-Fi 6e (5.925–7.125 GHz).
Multi-user multiple-input and multiple-output (MU-MIMO) systems are the mainstream of current antenna design. This paper proposes a dual-band 6 × 6 MIMO glasses antenna for Wi-Fi 6E and Wi-Fi 7 indoor wireless communication. The six antennas have the same structure, all of which are F-shaped monopole antennas. They are on the left and right temples, at the upper and lower ends of the left and right frames, which effectively uses the space of the glasses. The substrate uses FR4 (εr=4.4, tanδ=0.02). The antenna design is compact (9 mm × 50 mm × 0.8 mm) and the glasses model is made of FR4. The overall model is similar to virtual reality (VR) glasses, which are convenient for a user to wear. The proposed antenna has three working frequency bands, at 2.4 GHz, 5 GHz, and 6 GHz. Through matching and optimization, the reflection coefficient can be lower than −10 dB. In addition, this paper evaluates two usage environments for simulation and measurement on the head and free space. The measurement results show that when the operating frequency band is at 2.45 GHz, the antenna efficiency is 86.1%, and the antenna gain is 1.9 dB. At 5.5 GHz, the antenna efficiency is 86.5%, and the antenna gain is 4.4 dB. At 6.7 GHz, the antenna efficiency is 85.4%, and the antenna gain is 3.7 dB. When the isolation of the MIMO antenna system is optimized, the low-frequency band is better than −10 dB, and the high-frequency band is better than −20 dB. The measured envelope correlation coefficient (ECC) values are all lower than 0.1.
This paper proposes a small antenna system (47 mm × 8 mm × 0.2 mm) to be used in a medical mask. The medical mask is composed of a frame and shield. The frame is made of polycarbonate (PC), and the shield is made of polyethylene terephthalate (PET). The author sets two groups of antennas on the upper side of the frame and sets two other groups of antennas on the sides facing away from the face of the shield. The substrates of the four antennas are all FR4 (εr = 4.4, tanδ = 0.02), so the first antenna type is a combination of PC and FR4, and the second antenna type is a combination of PET and FR4. The antenna system has three working frequency bands, in which the reflection coefficient is lower than −10 dB after actual measurement, and its working frequency bandwidth is 2.38–2.62 GHz, 3.38–3.74 GHz, and 5.14–8 GHz, respectively. It can be effectively used in 5G FR1 and Wi-Fi 7 frequency bands and can easily be combined with medical masks of different materials. This antenna system can use Wi-Fi 7 for wireless transmission indoors and use the 5G FR1 frequency band for wireless transmission outdoors, achieving seamless transmission capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.