To achieve six degree-of-freedom autonomous navigation of an inboard spacecraft, a novel algorithm called iterative closest imaging point (ICIP) is proposed, which deals with the pose estimation problem of a vision navigation system (VNS). This paper introduces the basics of the ICIP algorithm, including mathematical model, algorithm architecture, and convergence theory. On this basis, a navigation method is proposed. This method realizes its initialization using a Gaussian mixture model-based Kalman filter, which simultaneously solves the 3D-to-2D point correspondences and the camera pose. The initial value sensitivity, computational efficiency, robustness, and accuracy of the proposed navigation method are discussed based on simulation results. A navigation experiment verifies that the proposed method works effectively. The three-axis Euler angle accuracy is within 0.19° (1σ), and the three-axis position accuracy is within 1.87 mm (1σ). The ICIP algorithm estimates the full-state pose by merely finding the closest point couples respectively form the images obtained by the VNS and predicted at an initial value. Then the optimized solution of the imaging model is iteratively calculated and the full-state pose is obtained. Benefiting from the absence of a requirement for feature matching, the proposed navigation method offers advantages of low computational complexity, favorable stability, and applicability in an extremely simple environment in comparison with conventional methods.
The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a novel method based on the geometrical constraints in object space, called checkerboard-fixed post-processing calibration (CPC), is proposed to solve the problem of simultaneously obtaining the intrinsic parameters of the cameras integrated in the MFNS and the transformation between the MFNS coordinate and the cameras’ coordinates. This method utilizes a two-axis turntable and a prior alignment of the coordinates is needed. Theoretical derivation and practical operation of the CPC method are introduced. The calibration experiment results of the MFNS indicate that the extrinsic parameter accuracy of the CPC reaches 0.1° for each Euler angle and 0.6 mm for each position vector component (1σ). A navigation experiment verifies the calibration result and the performance of the MFNS. The MFNS is found to work properly, and the accuracy of the position vector components and Euler angle reaches 1.82 mm and 0.17° (1σ) respectively. The basic mechanism of the MFNS may be utilized as a reference for the design and analysis of multiple-camera systems. Moreover, the calibration method proposed has practical value for its convenience for use and potential for integration into a toolkit.
Polymer composites with high thermal conductivity (TC) as electronic packaging materials play a critical role to dissipate heat in microelectronic devices. Among several methods to improve their TC, connection of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.