Mobile micro-and nanorobots have been proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro-and nanorobots are required aspects. The fabrication of smallscale robots with non-cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. We report the 3D microfabrication of biodegradable soft helical microswimmers via two-photon polymerization of the nontoxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA). GelMA microswimmers are fabricated with user-defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, our soft helical microswimmers can corkscrew above the step-out frequency with relatively high values of forward velocity, suggesting an unprecedented selfadaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of
Micro-and nanorobots are promising devices for biomedical and environmental applications. The past few years have witnessed rapid developments in this field. This short review intends to address recent progress on magnetically driven micro-and nanorobots developed in our laboratory and by other research groups. Different designs such as helical swimmers, flexible swimmers, surface walkers, and others are categorized and discussed. Specific applications of these robots in the fields of biomedicine or environmental remediation are also reported. Finally, the use of magnetic fields for additional capabilities beyond manipulation is presented.
Micro- and nanorobots have shown great potential for applications in various fields, including minimally invasive surgery, targeted therapy, cell manipulation, environmental monitoring, and water remediation. Recent progress in the design, fabrication, and operation of these miniaturized devices has greatly enhanced their versatility. In this report, the most recent progress on the manipulation of small-scale robots based on power sources, such as magnetic fields, light, acoustic waves, electric fields, thermal energy, or combinations of these, is surveyed. The design and propulsion mechanism of micro- and nanorobots are the focus of this article. Their fabrication and applications are also briefly discussed.
Motile metal−organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.