Magnetic miniature soft‐bodied robots allow non‐invasive access to restricted spaces and provide ideal solutions for minimally invasive surgery, micromanipulation, and targeted drug delivery. However, the existing elastomer‐based (silicone) and fluid‐based (ferrofluid or liquid metal) magnetically actuated miniature soft robots have limitations. Owing to its limited deformability, the elastomer‐based small‐scale soft robot cannot navigate through a highly restricted environment. In contrast, although fluid‐based soft robots are more capable of deformation, they are also limited by the unstable shape of the fluid itself, and are therefore poorly adapted to the environment. In this study, non‐Newtonian fluid‐based magnetically actuated slime robots with both the adaptability of elastomer‐based robots and reconfigurable significant deformation capabilities of fluid‐based robots are demonstrated. The robots can negotiate through narrow channels with a diameter of 1.5 mm and maneuver on multiple substrates in complex environments. The proposed slime robot implements various functions, including grasping solid objects, swallowing and transporting harmful things, human motion monitoring, and circuit switching and repair. This study proposes the design of novel soft‐bodied robots and enhances their future applications in biomedical, electronic, and other fields.
A magnetic urchin‐like microswimmer based on sunflower pollen grain (SPG) that can pierce the cancer cell membrane and actively deliver therapeutic drugs is reported. These drug loaded microperforators are fabricated on a large scale by sequentially treating the natural SPGs with acidolysis, sputtering, and vacuum loading. The microswimmers exhibit precise autonomous navigation and obstacle avoidance in complex environments via association with artificial intelligence. Assemblies of microswimmers can further enhance individual motion performance and adaptability to complicated environments. Additionally, the experimental results demonstrate that microswimmers with nanospikes can accomplish single‐cell perforation for direct delivery under an external rotating magnetic field. Drugs encapsulated in the inner cavity of the microperforators can be accurately delivered to a specific site via remote control. These dual‐action microswimmers demonstrate good biocompatibility, high intelligence, precision in single‐cell targeting, and sufficient drug loading, presenting a promising avenue for many varieties of biomedical applications.
Many astonishing biological collective behaviors exist in nature, and artificial microrobotic swarms have been developed by emulating these scenarios. However, these microswarms typically have single structures and lack the adaptability that many biological swarms exhibit to thrive in complex environments. Inspired by viscoelastic fire ant aggregations and using a combination of experiment and simulation, a strategy to trigger ferrofluid droplets into forming microswarms exhibiting both liquid‐like and solid‐like behaviors is reported. By spatiotemporally programming an applied magnetic field, microswarms can be liquefied to implement reversible elongation with a high aspect ratio and solidified into entireties to perform overturning and bending behaviors. It is demonstrated that reconfigurability enables the microswarm to be a mobile dexterous micromanipulator, acting not only as a soft “octopus arm” to explore a confined environment and grasp a targeted object but also adaptively navigate multiple terrains, such as uneven surfaces, curved grooves, complex mazes, high steps, narrow channels, and even wide gaps. This microrobotic swarm can reconfigure both shapes and tasks based on the demands of the environment, presenting novel solutions for a variety of applications.
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR’s scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M3RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.