Magnetic miniature soft‐bodied robots allow non‐invasive access to restricted spaces and provide ideal solutions for minimally invasive surgery, micromanipulation, and targeted drug delivery. However, the existing elastomer‐based (silicone) and fluid‐based (ferrofluid or liquid metal) magnetically actuated miniature soft robots have limitations. Owing to its limited deformability, the elastomer‐based small‐scale soft robot cannot navigate through a highly restricted environment. In contrast, although fluid‐based soft robots are more capable of deformation, they are also limited by the unstable shape of the fluid itself, and are therefore poorly adapted to the environment. In this study, non‐Newtonian fluid‐based magnetically actuated slime robots with both the adaptability of elastomer‐based robots and reconfigurable significant deformation capabilities of fluid‐based robots are demonstrated. The robots can negotiate through narrow channels with a diameter of 1.5 mm and maneuver on multiple substrates in complex environments. The proposed slime robot implements various functions, including grasping solid objects, swallowing and transporting harmful things, human motion monitoring, and circuit switching and repair. This study proposes the design of novel soft‐bodied robots and enhances their future applications in biomedical, electronic, and other fields.
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR’s scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M3RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.