During resin-bonding procedures, dentin surfaces are treated with acidic conditioners to remove the smear layer and decalcify the surface to expose the collagen fibrils of the underlying matrix. These decalcified surfaces are then either air-dried or treated with dehydrating solvents, procedures which may modify the physical properties of the dentin matrix. The purpose of this study was to evaluate the effects of dehydration on the stiffness of the decalcified dentin matrix. Small (8 x 1.7 x 0.9 mm) beams of dentin were prepared from mid-coronal dentin of extracted human molars. The ends were covered with varnish for protection, and the specimens were placed in 0.5 M EDTA for 5 days to decalcify. The stiffness was measured by both the cantilever technique and by conventional stress-strain testing. Specimens tested by the cantilever technique were sequentially exposed to water, acetone, alcohol, HEMA, and glutaraldehyde. Specimens tested by conventional stress-strain testing were exposed either to water, acetone, or HEMA, or were allowed to air-dry. The results indicate that the stiffness of decalcified human dentin matrix is very low (ca. 7 MPa), if the specimens are wet with water. As they are dehydrated, either chemically in water-miscible organic solvents or physically in air, the stiffness increases 20- to 38-fold at low strains or three- to six-fold at high strains. These increases in modulus were rapidly reversed by rehydration in water. Exposure to glutaraldehyde also produced an increase in stiffness that was not reversible when the specimens were placed back in water.
Objective. This study employs a human head model with real skull to demonstrate the feasibility of transcranial acoustoelectric brain imaging (tABI) as a new modality for electrical mapping of deep dipole sources during treatment of epilepsy with much better resolution and accuracy than conventional mapping methods. Approach. This technique exploits an interaction between a focused ultrasound (US) beam and tissue resistivity to localize current source densities as deep as 63 mm at high spatial resolution (1 to 4 mm) and resolve fast time-varying currents with sub-ms precision. Main results. Detection thresholds through a thick segment of the human skull at biologically safe US intensities was below 0.5 mA and within range of strong currents generated by the human brain. Significance. This work suggests that 4D tABI may emerge as a revolutionary modality for real-time high-resolution mapping of neuronal currents for the purpose of monitoring, staging, and guiding treatment of epilepsy and other brain disorders characterized by abnormal rhythms.
We describe a new application of acoustoelectric imaging for non-invasive mapping of the location, magnitude and polarity of current generated by a clinical deep brain stimulation (DBS) device. Ultrasound at 1MHz was focused near the DBS device as short current pulses were injected across different DBS leads. A recording electrode detected the high-frequency acoustoelectric interaction signal. Linear scans of the US beam produced time-varying images of the magnitude and polarity of the induced current, enabling precise localization of the DBS leads within 0.70mm, a detection threshold of 1.75mA at 1 MPa and a sensitivity of 0.52 ± 0.07 μV/(mA*MPa). Monopole and dipole configurations in saline were repeated through a human skullcap. Despite 13.8-dB ultrasound attenuation through bone, acoustoelectric imaging was still >10dB above background with a sensitivity of 0.56 ± 0.10 μV/(mA*MPa). This proof-of-concept study indicates that selective mapping of lead currents through a DBS device may be possible using non-invasive acoustoelectric imaging.
Objective. New innovations in deep brain stimulation (DBS) enable directional current steering—allowing more precise electrical stimulation of the targeted brain structures for Parkinson’s disease, essential tremor and other neurological disorders. While intra-operative navigation through MRI or CT approaches millimeter accuracy for placing the DBS leads, no existing modality provides feedback of the currents as they spread from the contacts through the brain tissue. In this study, we investigate transcranial acoustoelectric imaging (tAEI) as a new modality to non-invasively image and characterize current produced from a directional DBS lead. tAEI uses ultrasound (US) to modulate tissue resistivity to generate detectable voltage signals proportional to the local currents. Approach. An 8-channel directional DBS lead (Infinity 6172ANS, Abbott Inc) was inserted inside three adult human skulls submerged in 0.9% NaCl. A 2.5 MHz linear array delivered US pulses through the transtemporal window and focused near the contacts on the lead, while a custom amplifier and acquisition system recorded the acoustoelectric (AE) interaction used to generate images. Main results. tAEI detected monopolar current with stimulation pulses as short as 100 µs with an SNR ranging from 10–27 dB when using safe US pressure (mechanical indices <0.78) and injected current of ~2 mA peak amplitude. Adjacent contacts were discernable along the length and within each ring of the lead with a mean radial separation between contacts of 2.10 and 1.34 mm, respectively. Significance. These results demonstrate the feasibility of tAEI for high resolution mapping of directional DBS currents using clinically-relevant stimulation parameters. This new modality may improve the accuracy for placing the DBS leads, guide calibration and programming, and monitor long-term performance of DBS for treatment of Parkinson’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.