Teleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the mechanism(s) that modulate infection remain largely unknown. A proper tissue culture model that is easier to handle but can quantitatively and qualitatively monitor infection progress may shed some lights. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue culture model to explore host pathogen interactions. The skin explant model resembles in vivo skin in tissue morphology, integrity, and immune functionality. Inoculation of aquatic pathogen Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell dissociation and inflammation. We conclude that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment of aquatic infection on the skin in aquaculture applications.
Gonorrhea is the second most common sexually transmitted infection, which is primarily localized but can be disseminated systemically. The mechanisms by which a localized infection becomes a disseminated infection are unknown. We used five pairs of Neisseria gonorrhoeae isolates from the cervix/urethra (localized) and the blood (disseminated) of patients with disseminated gonococcal infection to examine the mechanisms that confine gonococci to the genital tract or enable them to disseminate to the blood. Multilocus sequence analysis found that the local and disseminated isolates from the same patients were isogenic. When culturing in vitro, disseminated isolates aggregated significantly less and transmigrated across a polarized epithelial monolayer more efficiently than localized isolates. While localized cervical isolates transmigrated across epithelial monolayers inefficiently, those transmigrated bacteria self-aggregated less and transmigrated more than cervical isolates but comparably to disseminating isolates. The local cervical isolates recruited the host receptors of gonococcal Opa proteins carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on epithelial cells. However, the transmigrated cervical isolate and the disseminated blood isolates recruit CEACAMs significantly less often. Our results collectively suggest that switching off the expression of CEACAM-binding Opa(s), which reduces self-aggregation, promotes gonococcal dissemination.
The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota.
Teleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the interaction and infection mechanisms remain largely unknown due to the lack of a proper tissue model that can quantitatively and qualitatively monitor infection progress. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue model that has not been explored in teleost fish before. The skin explant model, cultured by creating epithelial polarity, resembles the in vivo skin in tissue morphology, integrity, and mucous cell and immune functionality. Inoculation of Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell junction disassembly and inflammation. We therefore concluded that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment for aquatic infection on mucosal surface in aquaculture applications.
Neisseria gonorrhoeae
is an obligate human pathogen responsible for gonorrhea, one of the most common sexually transmitted infections. The yearly increased multidrug resistance in GC has led to treatment failure clinically, suggesting an urgent need for novel therapy to combat the global health issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.