A large-area module (active area > 20 cm 2 ) with a power conversion efficiency (PCE) of 10.4% (certified at 10.1%) using a non-fullerene blend was demonstrated, which is by far the highest PCE reported to date. The same module also delivers a power of 40 mW/cm 2 (PCE 22%) under indoor lighting. Equally important, PCEs of 12%-14% were achieved for blends processed in ambient and/or without halogenated solvent.
In this research, a haptacyclic carbazole-based dithienocyclopentacarbazole (DTCC) ladder-type structure was formylated to couple with two 1,1-dicyanomethylene-3-indanone (IC) moieties, forming a new nonfullerene acceptor DTCCIC-C17 using a bulky branched 1-octylnonayl side chain at the nitrogen of the embedded carbazole and four 4-octylphenyl groups at the sp-carbon bridges. The rigid and coplanar main-chain backbone of the DTCC core provides a broad light-absorbing window and a higher-lying LUMO energy level, whereas the bulky flanked side chains reduce intermolecular interactions, making DTCCIC-C17 amorphous with excellent solution processability. The DTCCIC-C17 as an acceptor is combined with a medium band gap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) as the donor in the active layer to obtain suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy alignments and complimentary absorption. The devices with an inverted configuration (ITO/ZnO/active layer/MoO/Ag) without using an aqueous poly(3,4-ethylenedioxythiophene) polystyrene sulfonate layer were fabricated for better device stability. When the diiodooctane-treated PBDB-T:DTCCIC-C17 active layer was thermally annealed at 50 °C for 10 min, the device achieved the highest efficiency of 9.48% with a high V of 0.98 V, a J of 14.27 mA cm, and an FF of 0.68.
An A−D−A oligomer, DTS(F 2 BT) 2 , was synthesized; its structural evolution was studied with DSC, POM, 2D-WAXD, and in-situ GI-XRD. The structural evolution of DTS(F 2 BT) 2 is stepwise and kinetically slow. Both rapid drying and the presence of PC 71 BM trapped DTS(F 2 BT) 2 in a less ordered nematic (N) phase. PDMS-assisted crystallization enabled a pristine DTS(F 2 BT) 2 thin film to attain a more ordered equilibrium phase, and enhanced the OFET mobility of DTS(F 2 BT) 2 . In OPV devices, DIO additive drove the DTS(F 2 BT) 2 domains in the DTS(F 2 BT) 2 :PC 71 BM blended film from the N phase toward the equilibrium phase, and resulted in enhanced OPV performances. These results reveal the slow ordering process of the A−D−A oligomer, and the importance of monitoring the degree of structural evolution of the active thin films in organic optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.