Hz-1 viral RNA transcription was studied during productive and persistent infections. The RNAs were localized to 10-to 30-kb regions within the viral genome, and the timing of their expression was determined. During productive infections, we detected 101 virus-specific transcripts that could be grouped into three categories by time of appearance. At 2 h postinoculation (p.i.), a total of 34 virus-specific transcripts were detected. An additional 51 and 16 virus-specific transcripts appeared between 4 and 6 h p.i. and at 8 h p.i., respectively. After 8 h, no new transcripts were found. Under conditions of persistent infection, we detected
Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases provide a pair of structures ideal for investigating the mechanism regarding how these cellulases can retain activity at high temperature. In the present study, we applied the SCHEMA non-contiguous recombination algorithm as a novel tool, which assigns protein sequences into blocks for domain swapping in a way that lessens structural disruption, to generate a set of chimeric proteins derived from the recombination of GsCelA and BsCel5A. Analyzing the activity and thermostability of this designed library set, which requires only a limited number of chimeras by SCHEMA calculations, revealed that one of the blocks may contribute to the higher thermostability of GsCelA. When tested against swollen Avicel, the highly thermostable chimeric cellulase C10 containing this block showed significantly higher activity (22%-43%) and higher thermostability compared to the parental enzymes. With further structural determinations and mutagenesis analyses, a 310 helix was identified as being responsible for the improved thermostability of this block. Furthermore, in the presence of ionic calcium and crown ether (CR), the chimeric C10 was found to retain 40% residual activity even after heat treatment at 90°C. Combining crystal structure determinations and structure-guided SCHEMA recombination, we have determined the mechanism responsible for the high thermostability of GsCelA, and generated a novel recombinant enzyme with significantly higher activity.
The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. IMPORTANCEBaculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains a large number of imperfect inverted repeats and is the most active ori in the viral genome during virus infection in insect cells. We also found that it is a unique ori that can replicate in mammalian cells without the assistance of baculovirus gene products. The identification of this ori should contribute to a better understanding of baculovirus DNA replication. Also, this ori is very useful in assisting with gene expression in mammalian cells.
Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA−FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.