Raphanus sativus (2n = 2x = 18) is a widely cultivated member of the family Brassicaceae, for which genomic resources are available only to a limited extent in comparison to many other members of the family. To promote more genetic and genomic studies and to enhance breeding programmes of R. sativus, we have prepared genetic resources such as complementary DNA libraries, expressed sequences tags (ESTs), simple sequence repeat (SSR) markers and a genetic linkage map. A total of 26 606 ESTs have been collected from seedlings, roots, leaves, and flowers, and clustered into 10 381 unigenes. Similarities were observed between the expression patterns of transcripts from R. sativus and those from representative members of the genera Arabidopsis and Brassica, indicating their functional relatedness. The EST sequence data were used to design 3800 SSR markers and consequently 630 polymorphic SSR loci and 213 reported marker loci have been mapped onto nine linkage groups, covering 1129.2 cM with an average distance of 1.3 cM between loci. Comparison of the mapped EST-SSR marker positions in R. sativus with the genome sequence of A. thaliana indicated that the Brassicaceae members have evolved from a common ancestor. It appears that genomic fragments corresponding to those of A. thaliana have been doubled and tripled in R. sativus. The genetic map developed here is expected to provide a standard map for the genetics, genomics, and molecular breeding of R. sativus as well as of related species. The resources are available at .
Clubroot disease caused by Plasmodiophora brassicae is one of the major diseases of Brassica crops, often devastating to the cultivation of cruciferous crops in temperate regions. In a previous study (Moriguchi et al. 1999) identified three major quantitative trait loci (QTLs) for clubroot resistance, each in a separate linkage group, in a population derived from a cross between a clubroot-susceptible inbred cabbage line, Y2A and a resistant inbred kale line, K269. In this study, the original random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers were converted into sequence-characterized amplified region (SCAR) markers to facilitate large-scale marker-assisted screening of clubroot resistance in cabbage breeding. Of 15 RAPD markers closely linked to the three QTLs, nine SCARs were developed as dominant markers after cloning and sequencing. In addition, two RAPD markers were converted into codominant cleaved amplified polymorphic sequence (CAPS) markers, and one RFLP marker out of three tested was converted to a dominant SCAR marker. The effect of selection for resistance by the improved markers was evaluated in progeny plants in the F 2 and F 3 . A total of 138 F 2 plants were genotyped with nine SCARs and 121 welldistributed makers consisting of 98 RAPD, 19 RFLP, two isozymes, and two morphological markers in order to estimate the level of resistance and the proportion of undesirable alleles from the kale in non-target areas in each of the F 2 populations. An F 2 plant, YK118, had kale alleles at QTL1, QTL3 and QTL9. Three F 2 plants, namely, YK107, YK25 and YK51 had kale alleles at only QTL1, QTL3 and QTL9, respectively. These F 2 plants were selected for their low proportion of alleles derived from kale in non-target regions. YK118, like the resistant kale parent, expressed very high resistance to three field isolates of Plasmodiophora brassicae, whereas the mean disease index in the F 2 and F 3 plants carrying only single QTLs was intermediate. The QTLs showed no differential response to the isolates. These plants with improved resistance will be useful as parental inbred lines for F 1 hybrids.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.