Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.
Digital PCR (dPCR) is a breakthrough technology that able to provide sensitive and absolute nucleic acid quantification. It is a third-generation technology in the field of nucleic acid amplification. A unique feature of the technique is that of dividing the sample into numerous separate compartments, in each of which an independent amplification reaction takes place. Several instrumental platforms have been developed for this purpose, and different statistical approaches are available for reading the digital output data. The dPCR assays developed so far in the plant science sector were identified in the literature, and the major applications, advantages, disadvantages, and applicative perspectives of the technique are presented and discussed in this review.
Digital polymerase chain reaction (dPCR) is a breakthrough technology based on the partitioning of the analytical sample and detection of individual end-point amplifications into the separate compartments. Among the numerous applications of this technology, its suitability in mutation detection is relevant and characterized by unprecedented levels of precision. The actual applicability of this analytical technique to quantify the presence of a specific plant genotype, in both raw materials and transformed products, by exploiting a point polymorphism has been evaluated. As proof of concept, an Italian premium pasta production chain was considered and a dPCR assay based on a durum wheat target variety private point mutation was designed and evaluated in supply-chain samples. From the results obtained, the assay can be applied to confirm the presence of a target variety and to quantify it in raw materials and transformed products, such as commercial grain lots and pasta. The performance, costs, and applicability of the assay has been compared to analytical alternatives, namely simple sequence repeats (SSRs) and genotype-by-sequencing based on Diversity Arrays Technology sequencing (DArTseqTM).
Several food products, made from hulled wheats, are now offered by the market, ranging from grains and pasta to flour and bakery products. The possibility of verifying the authenticity of wheat species used at any point in the production chain is relevant, in defense of both producers and consumers. A chip digital PCR assay has been developed to detect and quantify percentages of hulless (i.e., common and durum wheat) and hulled (i.e., einkorn, emmer and spelt) wheats in grains, flours and food products. The assay has been designed on a polymorphism in the miRNA172 target site of the AP2-5 transcription factor localized on chromosome 5A and involved in wheat spike morphogenesis and grain threshability. The assay has been evaluated even in a real-time PCR system to assess its applicability and to compare the analytical costs between dPCR and real-time PCR approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.